No CrossRef data available.
Published online by Cambridge University Press: 16 March 2015
Thermal rectification in nanostructured materials is an active topic of research and development. Here it is suggested that porous semiconductor materials can offer an unmatched tailoring of its structural properties, resulting in both the ability to study the effects of nanoscale morphology on thermal rectification phenomenon, and the perspective to achieve large thermal rectification over a wide temperature range in combination with other beneficial properties, such as a wide tunability of thermal conductivity, or optical transparency of the thermally rectifying structure. In this contribution we are presenting the first to our knowledge experimental demonstration of thermal rectification in mesoporous silicon. The influence of pore morphology controlled via Si substrate crystallographic orientation and etching conditions on thermal rectification are studied. The effect of oxidation of the porous material is presented as well. Experimental results are further compared with several recently published theoretical predictions of thermal rectification in similar structures.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.