No CrossRef data available.
Article contents
Thermal Stability of Amorphous Ni-Nb Thin Films for Use as Diffusion Barriers
Published online by Cambridge University Press: 21 February 2011
Abstract
The interdiffusion and crystallization reactions between amorphous Ni-Nb alloy films and Si substrates and several overlayer metals have been monitored by x-ray diffraction and high resolution Rutherford backscattering spectroscopy. Free standing amorphous thin films of Ni-Nb alloys crystallize in one hour at temperatures between 600–625 °C and show little dependence of the crystallization temperature, Tx, on composition over the range from 30–80 at.% Ni. However, in films that are sputter deposited onto Si substrates Tx tends to increase with increasing Nb composition. Ni60Nb40 samples without overlayers crystallize at 650–700 °C. Enhancement of the thermal stability to 700–750 °C is achieved with a Nb overlayer. In contrast, a Ni overlayer can reduce Tx to 450 °C. At the film/substrate interface silicide formation reactions with Ni from the film contribute to a destabilization of the amorphous alloy. The modification of Tx with Ni, Nb, and other overlayers appears to be related to changes in the reaction kinetics associated with penetration of the overlayer into the film.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1988