Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T12:51:17.819Z Has data issue: false hasContentIssue false

Thermoelectric Properties of New Thallium Tellurides

Published online by Cambridge University Press:  26 January 2011

Cheriyedath Raj Sankar
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
Savitree Bangarigadu-Sanasy
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
Holger Kleinke
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, ON, Canada N2L 3G1.
Get access

Abstract

Ternary thallium chalcogenides of the formula Tl4MQ4, where M = Zr and Hf and Q = S, Se, and Te were synthesized and characterized. Our X-ray diffraction studies on suitable single crystals reveal that the sulphides and selenides are isostructural, with monoclinic space group P, whereas the corresponding tellurides crystallize in the rhombohedral crystal system (R). The structures of the sulphides and selenides are comprised of zigzag chains of edge-sharing MQ6 octahedra, whereas the MTe6 octahedra are interconnected via common faces to form linear trimeric units. In all cases, the atoms adopt common oxidation states, namely Tl+, M4+, and Q2–. The electronic structure calculations using the linear muffin tin orbital (LMTO) method predicted band gaps of 1.7 eV, 1.3 eV and 0.3 eV for the sulphides, selenides and tellurides, respectively, implying sulphides and selenides are large band gap materials, and the tellurides narrow gap semiconductors. Their electronic transport properties are also evaluated with respect to the thermoelectric energy conversion.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Snyder, G. J. and Toberer, E. S., Nature Mater. 7, 105–114 (2008).Google Scholar
2. Toberer, E. S., May, A. F., and Snyder, G. J., Chem. Mat. 22, 624–634.10.1021/cm901956rGoogle Scholar
3. Kleinke, H., Chem. Mat. 22, 604–611 (2010).Google Scholar
4. Sootsman, J. R., Chung, D. Y., and Kanatzidis, M. G., Angew. Chem. Int. Ed. 48, 8616–8639 (2009).Google Scholar
5. Wood, C., Rep. Prog. Phys. 51, 459–539 (1988).Google Scholar
6. Vineis, C. J., Shakouri, A., Majumdar, A., and Kanatzidis, M. G., Adv. Mater. 22, 3970–3980 (2010).Google Scholar
7. Androulakis, J., Hsu, K. F., Pcionek, R., Kong, H., Uher, C., D’Angelo, J. J., Downey, A., Hogan, T., and Kanatzidis, M. G., Adv. Mater. 18, 1170–1173 (2006).Google Scholar
8. Venkatasubramanian, R., Siivola, E., Colpitts, T., and O’Quinn, B., Nature 413, 597 (2001).10.1038/35098012Google Scholar
9. Wölfing, B., Kloc, C., Teubner, J., and Bucher, E., Phys. Rev. Lett. 86, 4350–4353 (2001).Google Scholar
10. Kurosaki, K., Kosuga, A., Muta, H., Uno, M., and Yamanaka, S., Appl. Phys. Lett. 87, 061919/1–061919/3 (2005).Google Scholar
11. Kurosaki, K., Kosuga, A., and Yamanaka, S., J. Alloy. Compd. 351, 14–17 (2003).Google Scholar
12. Kurosaki, K., Kosuga, A., and Yamanaka, S., J. Alloy. Compd. 351, 279–282 (2003).Google Scholar
13. Yamanaka, S., Kosuga, A., and Kurosaki, K., J. Alloy. Compd. 352, 275–278 (2003).Google Scholar
14. Eulenberger, G., Z. Kristallogr. 145, 427–436 (1977).Google Scholar
15. Klepp, K. O. and Eulenberger, G., Z. Naturforsch. B 39, 705–712 (1984).Google Scholar
16. Klepp, K. O., Z. Naturforsch. B 55, 39–44 (2000).Google Scholar
17. Klepp, K. O., Z. Naturforsch. B 47, 411–417 (1992).Google Scholar
18. Klepp, K. O., Z. Naturforsch. B 40, 878–882 (1985).Google Scholar
19. Preishuber-Pflugl, H. and Klepp, K. O., Z. Kristallogr. -NCS 218, 383–384 (2003).Google Scholar
20. Eulenberger, G., Acta Crystallogr. C 42, 528–534 (1986).Google Scholar
21. Agafonov, P. V., Legendre, B., Rodier, N., Cense, J. M., Dichi, E., and Kra, G., Acta Crystallogr. C 47, 1300–1301 (1991).Google Scholar
22. Klepp, K. O. and Ecker, P., J. Solid State Chem. 117, 351–355 (1995).Google Scholar
23. Klepp, K. O. and Gurtner, D., J. Alloy. Compd. 243, 6–11 (1996).Google Scholar
24. Klepp, K. O. and Kolb, A., Z. Naturforsch. B 54, 441–446 (1999).Google Scholar
25. Kosuga, A., Kurosaki, K., Muta, H., and Yamanaka, S., J. Appl. Phys. 99, 063705 (2006).Google Scholar
26. Sabov, M. Y., Peresh, E. Y., and Barchii, I. E., Ukr. Khim. Zhur. 64, 18–21 (1998).Google Scholar
27. Sankar, C. R., Bangarigadu-Sanasy, S., Assoud, A., and Kleinke, H., Inorg. Chem., in press.Google Scholar
28. Sheldrick, G. M., Acta Crystallogr. A 64, 112–122 (2008).Google Scholar
29. APEX2 User Manual, Bruker AXS Inc.: Madison, WI. (2006).Google Scholar
30. Spek, A. L., J. Appl. Crystallogr. 36, 7–13 (2003).10.1107/S0021889802022112Google Scholar
31. Andersen, O. K., Phys. Rev. B 12, 3060–3083 (1975).Google Scholar
32. Hedin, L. and Lundqvist, B. I., J. Phys. C 4, 2064–2083 (1971).Google Scholar
33. Sankar, C. R., Bangarigadu-Sanasy, S., Assoud, A., and Kleinke, H., J. Mater. Chem. 20, 7485–7490 (2010).Google Scholar
34. McTaggart, F. K. and Wadsley, A. D., Austr. J. Chem. 11, 445–457 (1958).Google Scholar
35. Kleinke, H., Inorg. Chem. 38, 2931–2935 (1999).Google Scholar
36. Soheilnia, N., Kleinke, K. M., and Kleinke, H., Chem. Mater. 19, 1482–1488 (2007).Google Scholar
37. Garcia, E. and Corbett, J. D., Inorg. Chem. 29, 3274–82 (1990).Google Scholar
38. Cerny, R., Joubert, J. M., Filinchuk, Y., and Feutelais, Y., Acta Crystallogr. C 58, i63–i65 (2002).Google Scholar
39. Assoud, A., Soheilnia, N., and Kleinke, H., J. Solid State Chem. 179, 2707–2713 (2006).Google Scholar
40. Dronskowski, R. and Blöchl, P. E., J. Phys. Chem. 97, 8617–8624 (1993).Google Scholar
41. Wang, P., Forbes, S., Kolodiazhnyi, T., Kosuda, K., and Mozharivskyj, Y., J. Am. Chem. Soc. 132, 8795–8803 (2010).Google Scholar