No CrossRef data available.
Article contents
Two Methods for Analyzing Waves in Composites with Random Microstructure
Published online by Cambridge University Press: 25 February 2011
Abstract
The problem of calculating the mean wave in a composite with random microstructure is addressed. Exact characterizations of the problem can be given, in the form of stochastic variational principles. Substitution of simple configuration-dependent trial fields into these generates approximations which are, in a sense, ‘optimal’. It is necessary in practice to employ only trial fields which will generate, in the variational principle, no more statistical information than is actually available. Trial fields that require knowledge of two-point statistics generate equations that can also be obtained directly, through use of the QCA. The same fields can be substituted into an alternative variational principle to yield an approximation that makes use of three-point statistics – this approximation is less easy to obtain by direct reasoning. When not even two-point information is available, some more elementary approximation is needed. One such approximation, which is simple and direct in its application, is an extension to dynamics of a “self-consistent embedding” scheme which is widely used in static problems. This is also discussed, together with some illustrative results for a matrix containing inclusions and for a polycrystal.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992