Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T21:20:07.075Z Has data issue: false hasContentIssue false

Uranium (and Cerium) Compounds At High Pressures and Magnetic Fields

Published online by Cambridge University Press:  01 February 2011

Andrew L. Cornelius
Affiliation:
Department of Physics, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154–4002
Ravhi S. Kumar
Affiliation:
Department of Physics, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154–4002
Brian E. Light
Affiliation:
Department of Physics, University of Nevada, Las Vegas, 4505 S Maryland Pkwy, Las Vegas, NV 89154–4002
Get access

Abstract

Correlated-electron systems are so named due to strong interactions between electrons unlike traditional metals (e.g. copper) that have “free electrons” that interact very weakly. Knowledge of the Fermi surface, density of electron states and band structure are the starting points for a first-principles understanding of the electronic and electronically related macroscopic properties, e.g. equation of state. The use of high pressure and high magnetic fields to alter the electron-electron (hybridization) and electron-lattice interactions give us powerful tools to understand complicated rare earth and actinide correlated-electron systems and allows precise testing of experiment to theory. Correlated-electron systems yield a wide variety of ground states that are a direct result of the hybridization strength including: short and long range magnetic order, spin fluctuating, enhanced Pauli paramagnetism, heavy fermion behavior and superconductivity. We will review some results on U compounds in high magnetic fields and high pressures. By comparing the results to Ce compounds that have significantly more localized f electrons, the effect of direct 5f electron wavefunction overlap in U compounds can be discerned. Consequences on the search for U based heavy fermion superconductors will be discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCS

1. Doniach, S., in Valence Instability and Related Narrow Band Phenomena, edited by Parks, R. D. (Plenum, New York, 1977).Google Scholar
2. Doniach, S., Physica B 231–234, 231 (1977).Google Scholar
3. Monthoux, P. and Lonzarich, G. G., Phys. Rev. B 63, 054529 (2001).Google Scholar
4. Cornelius, A. L., Gangopadhyay, A. K., Schilling, J. S., and Assmus, W., Phys. Rev. B 55, 14109 (1997).Google Scholar
5. Cornelius, A. L., Schilling, J. S., Mandrus, D., and Thompson, J. D., Phys. Rev. B 52, R15699 (1995).Google Scholar
6. Thompson, J. D. and Lawrence, J. M., in Handbook on the Physcis and Chemistry of Rare Earths (North-Holland, Amsterdam, 1994), Vol. 19, Chap. 133, pp. 383477.Google Scholar
7. Endstra, T., Nieuwenhuys, G. J. and Mydosh, J. A., Phys. Rev. B 48, 9595 (1993).Google Scholar
8. Sanchez, J. P. and Abd-Elmeguid, M. M., Hyperfine Inter. 128, 137 (2000).Google Scholar
9. Hegger, H. et al., Phys. Rev. Lett. 84, 4986 (2000).Google Scholar
10. Moshopoulou, E. G., Fisk, Z., Sarrao, J. L., and Thompson, J. D., J. Sol. State Chem 158, 25 (2001).Google Scholar
11. Lander, G. H., Mueller, M. H., Sparlin, M. M, and Vogt, O., Phys. Rev. B 14, 5035 (1976).Google Scholar
12. Malik, S. K. and Adroja, D. T., Phys. Rev. B 43, 6295 (1991).Google Scholar
13. Trovarelli, O., Sereni, J. G., Schmerber, G., and Kappler, J. P., Phys. Rev. B 49, 15179 (1994).Google Scholar
14. Cornelius, A. L., Ph.D. thesis, Washington University, St. Louis, 1996.Google Scholar
15. Klotz, S., Schilling, J. S., and Müller, P., in Frontiers of High-Pressure Research, edited by Hochheimer, H. D. and Etters, E. D. (Plenum, New York, 1991).Google Scholar
16. Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Haüsermann, D., High Press. Res. 14, 235 (1996).Google Scholar
17. Rodriguez-Carvajal, J., Physica B 192, 55 (1993).Google Scholar
18. Wasserman, A., Springford, M., and Hewson, A. C., J. Phys. Condens. Matter 1, 2669 (1989).Google Scholar
19. Springford, M., Physica B 171, 151 (1991).Google Scholar
20. Lonzarich, G. G., J. Magn. Magn. Mater. 76–77, 1 (1988).Google Scholar
21. Wasserman, A. and Springford, M., Adv. Phys. 45, 471 (1996).Google Scholar
22. Taillefer, L., Flouquet, J., and Lonzarich, G. G., Physica B 169, 257 (1991).Google Scholar
23. Lawrence, J. M. and Shapiro, S. M., Phys. Rev. B 22, 4379 (1980).Google Scholar
24. Bao, W. et al., Phys. Rev. B 62, R14621 (2000).Google Scholar
25. Cornelius, A. L., Arko, A. J., Sarrao, J. L., Hundley, M. F., and Fisk, Z., Phys. Rev. B 62, 14181 (2000).Google Scholar
26. Cornelius, A. L., Pagliuso, P. G., Hundley, M. F., and Sarrao, J. L. Phys. Rev. B 64, 144411 (2001).Google Scholar
27. Pagliuso, P. G. et al., Phys. Rev. B 66, 054433 (2002).Google Scholar
28. Zapf, V. S. et al., Phys. Rev. B 67, 064405 (2003).Google Scholar
29. Stewart, G. R., Rev. Mod. Phys. 73, 797 (2001).Google Scholar
30. Bao, Wei et al., Phys. Rev. B 65, R100505 (2002).Google Scholar
31. McCoy, B. M. and Wu, T. T., Two-Dimensional Ising Model (Harvard University Press, Cambridge, 1973).Google Scholar
32. Takeuchi, T. et al., J. Phys. Soc. Jpn. 70, 877 (2001)Google Scholar
33. Pagliuso, P. G. et al., Physica B 320, 370 (2002)Google Scholar
34. Christianson, A. D. et al., Phys. Rev. B 66, 139102 (2002).Google Scholar
35. Fisher, R. A. et al., Phys. Rev. B 65, 224509 (2002).Google Scholar
36. Rajan, V. T., Phys. Rev. Lett. 51, 308 (1983).Google Scholar
37. Mito, T. et al., Phys. Rev. Lett 63, 077004 (2003).Google Scholar
38. Nakatsuji, S. et al., Phys. Rev. Lett. 89, 106402 (2002).Google Scholar
39. Nakatsuji, S., Pines, D., and Fisk, Z., cond-mat/0304587.Google Scholar
40. Curro, N. J. et al., Phys. Rev. Lett. 90, 227202 (2003).Google Scholar
41. Vedel, I., Redon, A. M., Mignot, J. M., and Leger, J. M., J. Phys. F: Metal Phys. 17, 849 (1987)Google Scholar
42. Cornelius, A. L., Schilling, J. S., Vogt, O., Mattenberger, K., and Benedict, U., J. Magn. Magn. Mater. 161, 169 (1996).Google Scholar
43. Cooper, B. R., Sheng, Q. G., Benedict, U., and Link, P., J. Alloys Comp. 213–214, 120 (1994).Google Scholar
44. Link, P. et al., J. Alloys Comp. 213–214, 398 (1994).Google Scholar
45. Saxena, S. S. et al., Nature 604, 587 (2000).Google Scholar
46. Nakashima, M. et al., J. Phys.: Condens. Matter 15, S2007 (2003).Google Scholar
47. Nakashima, M. et al., J. Phys.: Condens. Matter 13, L569 (2001).Google Scholar
48. Sarrao, J. L. et al., Nature 420, 297 (2002).Google Scholar
49. Wastin, F., Boulet, P., Rebizant, J., Colineau, E., and Lander, G. H., J. Phys.: Condens. Matter 15, S2279 (2003).Google Scholar
50. Cox, D. E. et al., Phys. Rev. B 33, 3614 (1986).Google Scholar