Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T02:35:42.646Z Has data issue: false hasContentIssue false

The Use of Closely Spaced Vickers Indentations to Model Erosion of Polycrystalline α-Al2O3

Published online by Cambridge University Press:  01 February 2011

Adolfo Franco Júnior
Affiliation:
Núcleo de Pesquisa em Química, Universidade Católica de Goiás, Caixa Postal 86, Setor Universitário, 74605–010 Goiânia-GO, Brazil
Steve G. Roberts
Affiliation:
Department of Materials, University of Oxford Parks Road, Oxford OX1 3PH, UK
Get access

Abstract

Arrays of closely spaced quasi-static indentation were made on specimens of polycrystalline α-Al2O3, mean grain size G=1.2, 3.8 and 14.1 μm. The critical indentation spacing to produce crack coalescence between indentations, and thus significant loss of material from the surface, was determined. These data are compared to results for low-impact-velocity wet erosive wear on the same materials; a good correspondence is found. The indentation data can be used to produce “wear maps”, which provide a guideline for predicting the low-impact-velocity erosive wear resistance of brittle materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, C.Cm., Rice, R. W., Johnson, D., and Platt, B. A., Ceram. Eng. Sci. Proc. 7, 995 (1985).Google Scholar
2. Cho, S-J., Hockey, B. J., Lawn, B. R., and Bennison, S. J., J. Am. Ceram. Soc. 72, 1249 (1989).Google Scholar
3. Deckman, D. E., Jahanmir, S., and Hsu, S. M., Wear, 149, 155 (1991).Google Scholar
4. Liu, H., and Fine, E. M., J. Am. Ceram. Soc. 76, 2393 (1993).Google Scholar
5. Rice, R. W., Ceram. Eng. Sci. Proc. 6, 940 (1985).Google Scholar
6. Marshall, D. B., Lawn, B. R., and Cook, R. F., J. Am. Ceram. Soc. 70, C139 (1987).Google Scholar
7. Rice, R. W., and Speronello, B. K., J. Am. Ceram. Soc. 59, 330 (1976).Google Scholar
8. Wiederhorn, S. M., and Hockey, B. J., J. Mater. Sci. 18, 766 (1983).Google Scholar
9. Miranda-Martinez, M., Davidge, R. W., and Riley, F. L., Wear 172, 41 (1994).Google Scholar
10. Miranda-Martinez, M., Davidge, R. W., and Riley, F. L., in Ceramics in Energy Applications, Proceedings of the Institute of Energy's 2nd International Conference, London, 20–21 April 1994, The Institute of Energy London, pp.239252. (1994).Google Scholar
11. Franco, A,. Erosive wear of Alumina. D. Phil thesis, University of Oxford, Oxford, UK, 1996, pp 119.Google Scholar
12. Franco, A., and Roberts, S. G., J. of Eur. Ceram. Soc. 16, 1365 (1996).Google Scholar
13. Franco, A., and Roberts, S. G., J. of Eur. Ceram. Soc. 18, 269 (1998).Google Scholar
14. Evans, A. G., and Wilshaw, T. R., Acta Metallurgica. 24, 939 (1976).Google Scholar
15. Evans, A. G., and Wilshaw, T. R., J. Mater. Sci. 12, 97 (1977).Google Scholar
16. Wiederhorn, S. M., Int. J. Fract. Mech. 4, 171 (1968).Google Scholar