Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-23T21:06:41.803Z Has data issue: false hasContentIssue false

Why phase-change Materials work: An EXAFS Investigation of Ge-Sb-Te Alloys

Published online by Cambridge University Press:  01 February 2011

Michael Paesler
Affiliation:
paesler@ncsu.edu, North Carolina State University, Physics, 2700 Stinson Dr., Box 8202, Raleigh, North Carolina, 27695, United States, 919-513-2184
S.C. Agarwal
Affiliation:
sca@iitk.ac.in, North Carolina State University, Physics, Raleigh, North Carolina, 27695, United States
G. Lucovsky
Affiliation:
lucovsky@ncsu.edu, North Carolina State University, Physics, Raleigh, North Carolina, 27695, United States
M.A. Paesler
Affiliation:
paesler@ncsu.edu, North Carolina State University, Physics, Raleigh, North Carolina, 27695, United States
P.C. Taylor
Affiliation:
craig@physics.utah.edu, University of Utah, Physics, Salt Lake City, Utah, 84112-0830, United States
Get access

Abstract

Studies of amorphous (a-) semiconductors have been driven by technological advances as well as fundamental theories. Observation of electrical switching, for example, fueled early interest in a-chalcogenides. More recently a-chalcogenide switching has been applied quite successfully to DVD technology where the quest for the discovery of better-suited materials continues. Thus, switching provides researchers today with an active arena of technological as well as fundamental study. On the theoretical front, bond constraint theory and rigidity theory provide a powerful framework for understanding the structure and properties of a-materials. Applications of these theories to switching in a-chalcogenides holds the promise of finding the best composition suited for switching applications. Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy is an ideally suited technique to investigate the switching properties of these materials. Results of previous EXAFS experiments will be presented and viewed through the lens of bond constraint theory and rigidity theory.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yamada, N., Ohno, E., Nishiuchi, K., and Akahira, N., J. Appl. Phys. 69, 2849 (1991).Google Scholar
2. Nonaka, T., Ohbayashi, G., Toriumi, Y, Mori, Y, and Hashimoto, H., Thin Solid Films, 370, 258261 (2000).Google Scholar
3. Lee, B., Abelson, J.R., Bishop, S.G., Kang, D, Cheong, B., and Kim, K., J. Appl. Phys. 97, 093509 (2005).Google Scholar
4. Kolobov, A.V., Fons, P., Frenkel, A.I., Ankudinov, A.L., Tominaga, J., Uruga, T., Nature Mater., 3, 703 (2004).Google Scholar
5. Kolobov, A.V., Private Communication (2005).Google Scholar
6. Phillips, J.C., J. Non-Cryst. Solids 34, 153 (1979).Google Scholar
7. Thorpe, M. F., J. Non-Cryst. Solids 57, 355 (1983).Google Scholar
8. Phase Transformations and Self-Organization in Electronic and Molecular Networks, Ed. by Phillips, J.C. and Thorpe, M.F. (Kluwer Academic/Plenum Pulbishers, 2001) p. 122.Google Scholar
9. Ovshinsky, S.R., Phys. Rev. Lett., 20, 1450 (1968).Google Scholar
10. Peng, C. and Mansuripur, M., Appl. Optics, 43, 4367 (2004).Google Scholar
11. Hudgens, S. and Johnson, B., MRS Bulletin, 1, Nov. (2004).Google Scholar
12. Sayers, D.E., Lytle, F.W., and Stern, E.A., Phys. Rev. B., 11, 4836 (1975).Google Scholar
13. Yang, C. Y., Paesler, M.A., Sayers, D.E., Phys. Rev. B, 39, 10342 (1989).Google Scholar
14. Ravel, B., J. Synchrotron Rad. 12, 537 (2005).Google Scholar
15. Rehr, J.J., Leon, J. Mustre de, Zabinsky, S.I., and Albers, T.C., J. Am. Chem. Soc. 113, 5135 (1991).Google Scholar
16. Newville, M., J. Synchrotron Rad. 8, 322 (2001).Google Scholar
17. Cotton, F.A. and Wilkinson, G., Advanced Inorganic Chemistry, 3rd Edition (Interscience Publishers, New York, 1972), Chap. 3, p. 117 (Table 3.4).Google Scholar
18. Sanderson, R.T., Chemical Bonds and Bond Energy, 2nd Edition (Academic Press, New York, 1976), Chap. 3, p. 6063.Google Scholar
19. Feltz, A., Amorphe und glasartige anorganische Festkörper, (Akademi-Verlag, Berlin, (1983), p. 248.Google Scholar
20. LaGrange, J.L., Mécanique Analytique, Paris (1788).Google Scholar
21. Maxwell, J.C., Philos. Mag. 27, 294299 (1864).Google Scholar
22. Jacobs, D.J. and Thorpe, M.F., Phys. Rev. Lett., 75, 22 (1995).Google Scholar
23. Feng, X., Bresser, W.J., and Boolchand, P., Phys. Rev. Lett., 78, 23 (1997).Google Scholar
24. Kerner, R. and Phillips, J.C., Solid State Communications, 117, 47 (2001).Google Scholar
25. Pauling, L., The Nature of the Chemical Bond, 3rd Edition (Cornell University Press, 1960), p. 511.Google Scholar