Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-08T19:09:46.864Z Has data issue: false hasContentIssue false

X-Ray Truncation Rod Analysis Of Cu Thin Films on C-Plane Sapphire

Published online by Cambridge University Press:  15 February 2011

K.S. Chung
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 USA
Hawoong Hong
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 USA
R.D. Aburano
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 USA
J.M. Roesler
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 USA
T. C. Chiang
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 USA
Haydn Chen
Affiliation:
Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 USA
Get access

Abstract

The interfacial structure of room-temperature MBE-grown Cu thin film on c-plane sapphire has been studied by measuring the substrate crystal truncation rod (CTR) using synchrotron radiation. One substrate was annealed in air at 1500°C for 3 hours followed by an anneal in UHV at 1200°C for 30 minutes prior to Cu deposition. CTR from a clean sapphire substrate without Cu coverage was measured as a reference. The annealed substrate showed higher diffracted intensity along the CTR due to changes in surface structure. The terminating sequence of the substrate surface layers have been obtained from intensity profile analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Katz, G., Appl. Phys. Lett. 12 (5), 161–163 (1968); J. Mat. Sci. 5, 736–740 (1970).Google Scholar
2. Gautier, M., Duraud, J. P., and Van, L. P., Sur. Sci. Lett. 249, L327332 (1991).Google Scholar
3. Moller, P. J. and Guo, Q., Thin Solid Films 201, 267279 (1991).Google Scholar
4. Varma, S., Chottiner, G. S. and Arbab, M., J. Vac. Sci. Technol. A 10(4), 28572862 (1992).Google Scholar
5. International Tables for X-Ray Crystallography, (Kynoch Press, Birmingham, England.), v III (1962) pp. 71, 99, 149; v IV (1974) pp. 233–239.; R. H. French, D. J. Jones and S. Loughin, J. Am. Ceram. Soc. 77 (2) 412–22 (1994).Google Scholar
6. Bloss, F. D., Crystallography and Crystal Chemistry an introduction, (Holt, Rinehart and Winston, Inc., 1971) pp. 251252.Google Scholar
7. Guo, J., Ellis, D. E., and Lam, D. J., Phys. Rev. B 43 (23), 1364713656 (1992).Google Scholar
8. Specht, E. D. and walker, F. J., Phys. Rev. B 47 (20), 1374313751 (1993).Google Scholar
9. Robinson, I. K. and Tweet, D. J., Rep. Prog. Phys. 55, 599651 (1992).Google Scholar
10. Manassidis, I. and Gillan, M. J., J. Am. Ceram. Soc. 77 (2), 335338 (1994).; I. Manassidis A. DeVita, and M. J. Gillan, Surf. Sci. Lett., 285, L517–521 (1993).Google Scholar
11. Ching, W. Y. and Xu, Y., J. Am. Ceram. Soc. 77 (2), 404411 (1994).Google Scholar
12. Renaud, G., Villette, B., Vilfan, I., and Bourret, A., Phys. Rev. Lett. 73 (13), 18251828 (1994).Google Scholar
13. Gautier, M., Renaud, G., Van, L. P., Villette, B., Pollak, M., Thromat, N., Joliet, F., and Duraud, J. P., J. Am. Ceram. Soc. 77 (2), 323334 (1994).Google Scholar
14. Sinha, S. K., Sirota, E. B., and Garoff, S., Phys. Rev. B. 38 (4), 22972311 (1988).Google Scholar