Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-13T13:43:05.690Z Has data issue: false hasContentIssue false

Influence of nitrogen source on the solubilization of natural gypsum (CaSO4.2H2O) and the formation of calcium oxalate by different oxalic and citric acid-producing fungi

Published online by Cambridge University Press:  01 April 1999

MOHAMMED M. GHARIEB
Affiliation:
Department of Botany, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt
GEOFFREY M. GADD
Affiliation:
Department of Biological Sciences, University of Dundee, Dundee, DD1 4HN, Scotland, U.K.
Get access

Abstract

The ability of six fungi to solubilize natural-occurring gypsum was tested in vitro. The solubilization process was monitored by the production of a clear zone (halo) around or underneath the growing colony on Czapek–Dox agar containing 0·5% (w/v) gypsum (CaSO4.2H2O). Aspergillus niger, Penicillium bilaii, P. simplicissimum and Paxillus involutus displayed differential solubilization activities depending on the supplemented nitrogen source. Colonies grown on nitrate-containing medium showed the ability to solubilize gypsum, but when ammonium (at equivalent nitrogen) was used there was a significant reduction in solubilization. It was found that liquid cultures of nitrate-grown fungi produced substantial amounts of oxalic acid, whereas in ammonium-containing medium oxalic acid was only detected in small amounts. The production of citric and gluconic acid under these experimental conditions was low in both media, although the involvement of citric acid in gypsum solubilization is possible. Coriolus versicolor and Phanaerochaete chrysosporium did not exhibit any solubilization activity in nitrate- or ammonium-containing medium. Additionally these two fungi excreted small quantities of oxalic acid in both media with no citric acid being produced in liquid medium. Concomitant with the solubilization process and inside the clear solubilized zone, A. niger, Pax. involutus and P. bilaii produced crystals of differing shapes and abundance depending on the fungal strain. No crystals were produced by P. simplicissimum. These crystals were identified as calcium oxalate based on HPLC analysis and energy-dispersive X-ray microanalysis. Abundance of these crystals was found to be correlated with both oxalic acid production and the acidity of the medium. It is concluded that gypsum solubilization was predominantly achieved by both oxalic acid, which was accompanied by formation of calcium oxalate crystals, and citric acid production rather than the acidity of the medium. The results are discussed in relation to the significance of such an activity in agricultural applications, e.g. land reclamation, as well as the possible roles played by these fungi in mineral cycling.

Type
Research Article
Copyright
The British Mycological Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)