Hostname: page-component-6bf8c574d5-rwnhh Total loading time: 0 Render date: 2025-02-26T03:46:56.407Z Has data issue: false hasContentIssue false

COMPACT MODULI OF ENRIQUES SURFACES OF DEGREE 2

Published online by Cambridge University Press:  26 February 2025

VALERY ALEXEEV*
Affiliation:
Department of Mathematics, University of Georgia Athens, GA 30602 United States
PHILIP ENGEL
Affiliation:
Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago Chicago, IL 60607-7045 United States pengel@uic.edu
D. ZACK GARZA
Affiliation:
Department of Mathematics University of Georgia Athens, GA 30602 United States zack@uga.edu
LUCA SCHAFFLER
Affiliation:
Dipartimento di Matematica e Fisica Università degli Studi Roma Tre 00146 Roma Italy luca.schaffler@uniroma3.it

Abstract

We describe a geometric, stable pair compactification of the moduli space of Enriques surfaces with a numerical polarization of degree $2$, and identify it with a semitoroidal compactification of the period space.

Type
Article
Copyright
© The Author(s), 2025. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexeev, V., Brunyate, A. and Engel, P., Compactifications of moduli of elliptic K3 surfaces: Stable pair and toroidal , Geom. Topol. 26 (2022), no. 8, 35253588.CrossRefGoogle Scholar
Alexeev, V. and Engel, P., Compactifications of moduli spaces of K3 surfaces with a nonsymplectic involution, preprint, arXiv:2208.10383, 2022.Google Scholar
Alexeev, V. and Engel, P., Compact moduli of K3 surfaces , Ann. Math. (2) 198 (2023), no. 2, 727789.CrossRefGoogle Scholar
Alexeev, V., Engel, P. and Han, C., Compact moduli of K3 surfaces with a nonsymplectic automorphism , Trans. Amer. Math. Soc. Ser. B 11 (2024), 144163.CrossRefGoogle Scholar
Alexeev, V., Engel, P. and Thompson, A., Stable pair compactification of moduli of K3 surfaces of degree 2 , J. Reine Angew. Math. 799 (2023), 156.Google Scholar
Alexeev, V. and Thompson, A., ADE surfaces and their moduli , J. Algebr. Geom. 30 (2021), no. 2, 331405.CrossRefGoogle Scholar
Baily, W. L. Jr. and Borel, A., Compactification of arithmetic quotients of bounded symmetric domains , Ann. Math. 2 (1966), no. 84, 442528.CrossRefGoogle Scholar
Birkar, C., Geometry of polarised varieties , Publ. Math. Inst. Hautes Études Sci. 137 (2023), 47105.CrossRefGoogle Scholar
Cossec, F. R., Projective models of Enriques surfaces , Math. Ann. 265 (1983), no. 3, 283334.CrossRefGoogle Scholar
Cossec, F. R., Dolgachev, I. and Liedtke, C., Enriques surfaces I, Springer Nature, Springer Singapore, 2024.Google Scholar
Cossec, F. R. and Dolgachev, I. V., Enriques surfaces. I, volume 76 of Progress in Mathematics, Birkhäuser Boston, Inc., Boston, MA, 1989.CrossRefGoogle Scholar
Coxeter, H. S. M., Wythoff’s construction for uniform polytopes , Proc. London Math. Soc. 2 (1935), no. 38, 327339.CrossRefGoogle Scholar
de Fernex, T., Kollár, J. and Xu, C., “The dual complex of singularities” in K. Oguiso, C. Birkar, S. Ishii and S. Takayama (eds.), Higher dimensional algebraic geometry in honour of Professor Yujiro Kawamata’s sixtieth birthday, volume 74 of Advanced Studies in Pure Mathematics, Mathematical Society of Japan, Tokyo, 2017, 103129.CrossRefGoogle Scholar
Engel, P., Looijenga’s conjecture via integral-affine geometry , J. Differ. Geom. 109 (2018), no. 3, 467495.CrossRefGoogle Scholar
Engel, P. and Friedman, R., Smoothings and rational double point adjacencies for cusp singularities , J. Differ. Geom. 118 (2021), no. 1, 23100.CrossRefGoogle Scholar
Enriques, F., Sopra le superficie algebriche di bigenere uno , Mem. Soc. Ital. Sci. XIV(3a) (1906), 327352.Google Scholar
Friedman, R., On the geometry of anticanonical pairs, preprint, arXiv:1502.02560, 2015.Google Scholar
Friedman, R. and Scattone, F., Type degenerations of $K3$ surfaces, Invent. Math. 83 (1986), no. 1, 139.CrossRefGoogle Scholar
Gritsenko, V. and Hulek, K., “Moduli of polarized Enriques surfaces” in C. Faber, G. Farkas and G. van der Geer (eds.), K3 surfaces and their moduli, volume 315 of Progress in Mathematics, Birkhäuser/Springer, Cham, 2016, 5572.CrossRefGoogle Scholar
Gross, M., Hacking, P. and Keel, S., Mirror symmetry for log Calabi-Yau surfaces I , Publ. Math. Inst. Hautes Études Sci. 122 (2015), 65168.CrossRefGoogle Scholar
Gross, M., Hacking, P. and Keel, S., Moduli of surfaces with an anti-canonical cycle , Compos. Math. 151 (2015), no. 2, 265291.CrossRefGoogle Scholar
Horikawa, E., On the periods of Enriques surfaces. I , Math. Ann. 234 (1978), no. 1, 7388.CrossRefGoogle Scholar
Horikawa, E., On the periods of Enriques surfaces. II , Math. Ann. 235 (1978), no. 3, 217246.CrossRefGoogle Scholar
Kiernan, P. and Kobayashi, S., Satake compactification and extension of holomorphic mappings , Invent. Math. 16 (1972), 237248.CrossRefGoogle Scholar
Kollár, J., Families of varieties of general type, volume 231 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 2023.CrossRefGoogle Scholar
Kollár, J., Laza, R., Saccà, G. and Voisin, C., Remarks on degenerations of hyper-Kähler manifolds , Ann. Inst. Fourier (Grenoble), 68 (2018), no. 7, 28372882.CrossRefGoogle Scholar
Kollár, J. and Mori, S.. Birational geometry of algebraic varieties, With the collaboration of Clemens, C. H. and Corti, A., eds., volume 134 of Cambridge Tracts in Mathematics, Cambridge University Press, Cambridge, 1998. Translated from the 1998 Japanese original.CrossRefGoogle Scholar
Kollár, J. and Xu, C. Y., Moduli of polarized Calabi-Yau pairs , Acta Math. Sin. (Engl. Ser.) 36 (2020), no. 6, 631637.CrossRefGoogle Scholar
Kulikov, V. S., Degenerations of $K3$ surfaces and Enriques surfaces, Izv. Akad. Nauk SSSR Ser. Mat. 41 (1977), no. 5, 10081042.Google Scholar
Laza, R., The KSBA compactification for the moduli space of degree two $K3$ pairs, J. Eur. Math. Soc. (JEMS) 18 (2016), no. 2, 225279.CrossRefGoogle Scholar
Laza, R. and O’Grady, K., GIT versus Baily-Borel compactification for $K3$ ’s which are double covers of , Adv. Math. 383 (2021), Paper No. 107680, 63.CrossRefGoogle Scholar
Looijenga, E., Root systems and elliptic curves , Invent. Math. 38 (1976), no. 1, 1732.CrossRefGoogle Scholar
Looijenga, E., On the semi-universal deformation of a simple-elliptic hypersurface singularity. II. The discriminant , Topology 17 (1978), no. 1, 2340.CrossRefGoogle Scholar
Looijenga, E., “New compactifications of locally symmetric varieties” in J. Carrell, A. V. Geramita and P. Russell (eds.), Proceedings of the 1984 Vancouver Conference in Algebraic Geometry, volume 6 of CMS Conference Proceedings, American Mathematical Society, Providence, RI, 1986, 341364.Google Scholar
Looijenga, E., Compactifications defined by arrangements. II. Locally symmetric varieties of type IV , Duke Math. J. 119 (2003), no. 3, 527588.CrossRefGoogle Scholar
Morrison, D. R., Semistable degenerations of Enriques’ and hyperelliptic surfaces , Duke Math. J. 48 (1981), no. 1, 197249.CrossRefGoogle Scholar
Namikawa, Y., Periods of Enriques surfaces , Math. Ann. 270 (1985), no. 2, 201222.CrossRefGoogle Scholar
Nikulin, V. V., Integer symmetric bilinear forms and some of their geometric applications , Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 1, 111177, 238.Google Scholar
Persson, U. and Pinkham, H., Degeneration of surfaces with trivial canonical bundle , Ann. Math. (2) 113 (1981), no. 1, 4566.CrossRefGoogle Scholar
Peters, C. and Sterk, H., On K3 double planes covering Enriques surfaces , Math. Ann. 376 (2020), nos. 3–4, 15991628.CrossRefGoogle Scholar
Pinkham, H. C., “Simple elliptic singularities, Del Pezzo surfaces and Cremona transformations” in R. O. Wells, Jr (ed.), Several complex variables (Proc. Sympos. Pure Math., Vol. XXX, Part 1, Williams Coll., Williamstown, Mass., 1975), American Mathematical Society, Providence, RI, 1977, 6971.Google Scholar
Developers, Sage, SageMath, the sage mathematics software system (Version 9.5), 2022. https://www.sagemath.org.Google Scholar
Shah, J., Degenerations of $K3$ surfaces of degree $4$ , Trans. Amer. Math. Soc. 263 (1981), no. 2, 271308.Google Scholar
Sterk, H., Compactifications of the period space of Enriques surfaces. I, Math. Z. 207 (1991), no. 1, 136.CrossRefGoogle Scholar
Symington, M., “Four dimensions from two in symplectic topology” in G. Matić and C. McCrory (eds.), Topology and geometry of manifolds (Athens, GA, 2001), volume 71 of Proceedings of Symposia in Pure Mathematics, American Mathematical Society, Providence, RI, 2003, 153208.CrossRefGoogle Scholar
Vinberg, E. B., The groups of units of certain quadratic forms , Mat. Sb. (N.S.) 87 (1972), no. 129, 1836.Google Scholar
Vinberg, E. B.. “Some arithmetical discrete groups in Lobačevskiĭ spaces”. in Discrete subgroups of Lie groups and applications to moduli (International Colloquium, Bombay, 1973), Oxford University Press, Bombay, 1975, 323348.Google Scholar