Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-05T05:27:37.818Z Has data issue: false hasContentIssue false

A Characterization of the Finite Simple Groups PSp(4, q), G2(q), I

Published online by Cambridge University Press:  22 January 2016

Paul Fong
Affiliation:
Tokyo University of Education
W.J. Wong
Affiliation:
Tokyo University of Education
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Suppose that G is the projective symplectic group PSp(4, q), the Dickson group G2(q)> or the Steinberg “triality-twisted” group where q is an odd prime power. Then G is a finite simple group, and G contains an involution j such that the centralizer C(j) in G has a subgroup of index 2 which contains j and which is the central product of two groups isomorphic with SL(2,q1) and SL(2,q2) for suitable ql q2. We wish to show that conversely the only finite simple groups containing an involution with this property are the groups PSp(4,q), G2(q)9. In this first paper we shall prove the following result.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1969

References

[1] Brauer, R., Zur Darstellungstheorie der Gruppen endlicher Ordnung I, Math. Z. 63 (1956), 406444.CrossRefGoogle Scholar
[2] Brauer, R., Some applications of the theory of blocks of characters of finite groups II, III, J. Alg. 1 (1964), 307334, 3 (1966), 225255.CrossRefGoogle Scholar
[3] Brauer, R., On finite Desarguesian planes I, II, Math. Z. 90 (1965), 117123, 91 (1966), 124151.Google Scholar
[4] Brauer, R., Investigations on groups of even order, Proc. Nat. Acad. Sci. 55 (1966), 254259.Google Scholar
[5] Brauer, R., On blocks and sections in finite groups II, Amer. J. Math., 90 (1968), 895925.CrossRefGoogle Scholar
[6] Brauer, R. and Nesbitt, C., On the modular characters of groups, Annals of Math. 42 (1941), 556590.CrossRefGoogle Scholar
[7] Brauer, R. and Suzuki, M., On finite groups of even order whose 2-Sylow group is a quaternion group, Proc. Nat. Acad. Sci. 45 (1959), 17571759.Google Scholar
[8] Carter, R. W., Simple groups and simple Lie algebras, J. London Math. Soc. 40 (1965), 193240.CrossRefGoogle Scholar
[9] Dade, E. C., Blocks with cyclic defect groups, Annals of Math. 84 (1966), 2048.CrossRefGoogle Scholar
[10] Dickson, L. E., Determination of all the subgroups of the known simple group of order 25920, Trans. Amer. Math. Soc. 5 (1904), 126166.CrossRefGoogle Scholar
[11] Dieudonné, J., La géométrie des groupes classiques, Springer, 1955.Google Scholar
[12] Fong, P., A characterization of the finite simple groups PSp(4, q), G 2(q), D\(q), II, to appear, Nagoya Math. J. Google Scholar
[13] Glauberman, G., Central elements in core-free groups, J. Alg. 4 (1966), 403420.Google Scholar
[14] Hall, P. and Higman, G., The p-length of a p-soluble group and reduction theorems for Burnside’s problem, Proc. London Math. Soc. (3), 7 (1956), 142.CrossRefGoogle Scholar
[15] Miller, G. A., The groups of isomorphisms of the simple groups whose degrees are less than fifteen, Arch. Math. u. Phys. 12 (1907), 249251.Google Scholar
[16] Schur, I., Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. fur reine u. angew. Math. 132 (1907), 85137.Google Scholar
[17] Steinberg, R., Générateurs, relations, et revêtements de groupes algébriques, Colloque sur la Théorie des groupes algébriques, Brussels, 1962.Google Scholar
[18] Wong, W. J., A characterization of the finite projective symplectic groups PSp4(q) , Trans. Amer. Math. Soc, 139 (1969), 135.Google Scholar