Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-22T02:58:35.270Z Has data issue: false hasContentIssue false

On Barth’s conjecture concerining

Published online by Cambridge University Press:  22 January 2016

Mihnea Coltoiu*
Affiliation:
Institute of Mathematics of the Romanian Academy, P.O. Box 1-764, RO-70700 Bucharest, Romania
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A classical, still unsolved problem, is the following: is every connected curve AP3 a set-theoretic complete intersection? It is clear that if A is a set-theoretic complete intersection then:

a) The algebraic cohomology groups vanish for every coherent algebraic sheaf on P3.

b) The analytic cohomology groups vanish for every coherent analytic sheaf on P3\A.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1997

References

[ 1 ] Andreotti, A. and Grauert, H., Théorèmes de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France, 90 (1962), 193259.Google Scholar
[ 2 ] Barth, W., Über die analytische Cohomologiegruppe Hn-1 (PnA, J). Invent. Math., 9(1970), 135144.Google Scholar
[ 3 ] Barth, W., Der Abstand von einer algebraischer Mannigfaltigkeit im komplex-projektiven Raum, Math. Ann., 187 (1970), 150162.Google Scholar
[ 4 ] Bierstone, E. and Milman, P. D., Semianalytic and subanalytic sets, Publ. Math. IHES, 67(1988), 542.Google Scholar
[ 5 ] Coltoiu, M. and Silva, A., Behnke-Stein theorem on complex spaces with singularities, Nagoya Math. J., 137 (1995), 183194.Google Scholar
[ 6 ] Denkowska, Z. and Wachta, K., La sous-analyticité de l’application tangente, Bull. Acad. Polon. Sci., 30 (1982), 329331.Google Scholar
[ 7 ] Goresky, M. and MacPherson, R., Stratified Morse theorey. Springer-Verlag 1987.Google Scholar
[ 8 ] Hartshorne, R., Cohomological dimension of algebraic varieties, Ann. Math., 88 (1968), 403460.Google Scholar
[ 9 ] Hironaka, H., Desingularization of complex-analytic varieties, Actes Congrès Int. Math., 2 (1970), 627631.Google Scholar
[10] Hironaka, H., Subanalytic sets. In: Number theory, algebraic geometry and commutative algebra, 453–493, Tokio: Kinokuniya 1973.Google Scholar
[11] Lojasiewicz, S., Triangulation of semi-analytic sets, Ann. Scuola Norm. Sup. Pisa, 18(1964), 449474.Google Scholar
[12] Lojasiewicz, S., Ensembles semi-analytiques, IHES, Bures-sur-Yvette, 1965.Google Scholar
[13] Milnor, J., Morse Theory, Ann. of Math. Studies, 51, Princeton Univ. Press 1963.Google Scholar
[14] Ohsawa, T., Completeness of noncompact analytic spaces, Publ. RIMS Kyoto Univ., 20 (1984), 683692.Google Scholar
[15] Peternell, M., Algebraic and analytic cohomology of quasiprojective varieties, Math. Ann., 286 (1990), 511528.Google Scholar
[16] Silva, A., Behnke-Stein theorem for analytic spaces, Trans. Amer. Math. Soc, 199 (1974), 317326.Google Scholar
[17] Spanier, E., Algebraic topology, New York: McGraw-Hill 1966.Google Scholar
[18] Vâjâitu, V., Invariance of cohomological q-completeness under finite holomorphic surjections, Manuscripta Math., 82 (1994), 113124.Google Scholar
[19] Vâjâitu, V., Approximation theorems and homology of q-Runge domains, J. reine angew. Math., 449 (1994), 179199.Google Scholar