No CrossRef data available.
Article contents
Quotients of L-functions
Published online by Cambridge University Press: 22 January 2016
Abstract
Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
In this paper a certain type of Dirichlet series, attached to a pair of Jacobi forms and Siegel modular forms is studied. It is shown that this series can be analyzed by a new variant of the Rankin-Selberg method. We prove that for eigenforms the Dirichlet series have an Euler product and we calculate all the local L-factors. Globally this Euler product is essentially the quotient of the standard L-functions of the involved Jacobi- and Siegel modular form.
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 2000
References
[Ar90]
Arakawa, T., Real analytic Eisenstein series for the Jacobi group, Abh. Math. Sem. Univ. Hamburg, 60 (1990), 131–148.Google Scholar
[Ar94]
Arakawa, T., Jacobi Eisenstein series and a basis problem for Jacobi forms, Comm. Mathematici Universitatis Sancti Pauli, 43, No.2 (1994), 181–216.Google Scholar
[A-H98]
Arakawa, T. and Heim, B., Real analytic Jacobi Eisenstein series and Dirichlet series attached to three Jacobi forms, MPI preprint (1998).Google Scholar
[Boe85]
Böcherer, S., Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. reine angew. Math., 362 (1985), 146–168.Google Scholar
[E-Z85]
Eichler, M. and Zagier, D., The theory of Jacobi forms, Progress in Mathematics Vol. 55, Birkhäuser, Verlag, 1985.CrossRefGoogle Scholar
[Ga84]
Garrett, P., Pullbacks of Eisenstein series; Applications. In: Automorphic forms of several variables, Taniguchi symposium 1983, Birkhäuser, 1984.Google Scholar
[Ga87]
Garrett, P., Decomposition of Eisenstein series: triple product L-functions, Ann. math., 125 (1987), 209–235.CrossRefGoogle Scholar
[Gr95]
Gritsenko, V. A., Modulformen zur Paramodulgruppe und Modulräume der Abelschen Varietäten, Schriftreihe des Sonderforschungsbereichs Geometrie und Analysis Heft 12, Mathematica Gottingensis, 1995.Google Scholar
[He97]
Heim, B., Analytic Jacobi Eisenstein series and the Shimura method, MPI preprint (1998).Google Scholar
[He98]
Heim, B., L-functions for Jacobi forms and the basis problem, MPI preprint (1998).Google Scholar
[He99]
Heim, B., Pullbacks of Eisenstein series, Hecke-Jacobi theory and automorphic L-functions, Proceedings of Symposia in Pure Mathematics Volume 66.2 (1999), 201–238.Google Scholar
[Kl90]
Klingen, H., Introductory lectures on Siegel modular forms, Cambridge University Press, Cambridge, 1990.Google Scholar
[K-S89]
Kohnen, W. and Skoruppa, N.-P., A certain Dirichlet series attached to Siegel modular forms of degree two, Invent. Math., 95 (1989), 449–476.Google Scholar
[Mu89]
Murase, A., L-functions attached to Jacobi forms of degree n, Part I. The basic identity, J. reine Math., 401 (1989), 122–156.Google Scholar
[M-S91]
Murase, A. and Sugano, T., Whittaker-Shintani functions on the symplectic group of Fourier-Jacobi type, Compositio Mathematica, 79 (1991), 321–349.Google Scholar
[S-Z88]
Skoruppa, N.-P. and Zagier, D., Jacobi forms and a certain space of modular forms, Inv. Math., 94, No. 1 (1988), 113–146.Google Scholar
[Ya90]
Yamazaki, T., Rankin-Selberg method for Siegel cusp forms, Nagoya Math. J., 120 (1990), 35–49.Google Scholar
You have
Access