Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-24T13:08:11.143Z Has data issue: false hasContentIssue false

The semi-balayability of real convolution kernels

Published online by Cambridge University Press:  22 January 2016

Masayuki Itô
Affiliation:
Department of Mathematics, Faculty of Sciences, Nagoya University, Chikusa-ku, Nagoya 464, Japan
Noriaki Suzuki
Affiliation:
Department of Mathematics, Faculty of Sciences, Hiroshima University, Naka-ku, Hiroshima 730, Japan
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Let X be a locally compact, σ-compact and non-compact abelian group. Throughout this paper, we shall denote by ξ a fixed Haar measure on X and by δ the Alexandroff point of X.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 1985

References

[ 1 ] Berg, C. and Forst, G., Potential theory on locally compact abelian groups, Springer-verlag, 1975.CrossRefGoogle Scholar
[ 2 ] Choquet, G. and Deny, J., Sur l’équation de convolution μ = μ*σ, C. R. Acad. Sc. Paris, 250 (1960), 799801.Google Scholar
[ 3 ] Choquet, G. and Deny, J., Aspects linéaires de la théorie du potentiel III. Noyaux de composition satisfaisant au principe du balayage sur tout ouvert, C. R. Acad. Sc. Paris, 250 (1960), 42604262.Google Scholar
[ 4 ] Deny, J., Sur l’équation de convolution μ = μ*σ, Sém. de la théorie du potentiel,. 4ème année, n°5, 1959/60.Google Scholar
[ 5 ] Deny, J., Noyaux de convolution de Hunt et les noyaux associés à une famille fondamentale, Ann. Inst. Fourier (Grenoble), 12 (1962), 643667.Google Scholar
[ 6 ] Itô, M., Sur la famille sous-ordonnée au noyau de convolution de Hunt II, Nagoya Math. J., 53 (1974), 115126.Google Scholar
[ 7 ] Itô, M., Sur le principe relatif de domination pour les noyaux de convolution, Hiroshima Math. J., 5, 2 (1975), 239350.Google Scholar
[ 8 ] Itô, M., Une caractérisation de noyaux de convolution réels de type logarithmique, Nagoya Math. J., 97 (1985), 149.Google Scholar