Article contents
Sous-algèbres birégulières d’une algèbre de Kac-Moody-Borcherds
Published online by Cambridge University Press: 22 January 2016
Abstract
Let be a Kac-Moody-Borcherds algebra on a field associated to a symetrizable matrix and with Cartan subalgebra . Let be an ad -invariant subalgebra such that the restriction to of the standard bilinear form is nondegenerate. We show that the root system Ψ of is a subsystem according to [Ba] of . Moreover, if a subsystem Ω satisfies some conditions (i.e. Ω is “réduit et presque-clos”) of Ψ, we construct inside of a Kac-Moody-Borcherds algebra with root system Ω.
Let k be a subfield of . We prove similar results in the case of an action of a finite group of k-semi-automorphisms. In particular, we obtain a generalization to the Kac-Moody case of a result by Borel and Tits.
Let be an almost-k-split form of a Kac-Moody algebra. We construct a Kac-Moody k-algebra with root system similar to the system of (save on some multiples of certain roots).
- Type
- Research Article
- Information
- Copyright
- Copyright © Editorial Board of Nagoya Mathematical Journal 1999
References
Références
- 1
- Cited by