Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-24T14:02:14.008Z Has data issue: false hasContentIssue false

Stochastic calculus over symmetric Markov processes with time reversal

Published online by Cambridge University Press:  11 January 2016

K. Kuwae*
Affiliation:
Department of Mathematics and Engineering, Graduate School of Science and Technology, Kumamoto University, Kumamoto, 860-8555 Japan, kuwae@gpo.kumamoto-u.ac.jp
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We develop stochastic calculus for symmetric Markov processes in terms of time reversal operators. For this, we introduce the notion of the progressively additive functional in the strong sense with time-reversible defining sets. Most additive functionals can be regarded as such functionals. We obtain a refined formula between stochastic integrals by martingale additive functionals and those by Nakao's divergence-like continuous additive functionals of zero energy. As an application, we give a stochastic characterization of harmonic functions on a domain with respect to the infinitesimal generator of semigroup on L2-space obtained by lower-order perturbations.

Type
Research Article
Copyright
Copyright © Editorial Board of Nagoya Mathematical Journal 2015

References

[1] Berg, C. and Forst, G., Potential Theory on Locally Compact Abelian Groups, Ergeb. Math. Grenzgeb. 87, Springer, New York, 1975. MR 0481057.Google Scholar
[2] Chen, Z.-Q., Gaugeability and conditional gaugeability, Trans. Amer. Math. Soc. 354 (2002), no. 11, 46394679. MR 1926893. DOI 10.1090/S0002-9947-02-03059-3.CrossRefGoogle Scholar
[3] Chen, Z.-Q., Fitzsimmons, P. J., Kuwae, K., and Zhang, T.-S., Perturbation of symmetric Markov processes, Probab. Theory Related Fields 140 (2008), 239275. MR 2357677. DOI 10.1007/s00440-007-0065-2.Google Scholar
[4] Chen, Z.-Q., Fitzsimmons, P. J., Kuwae, K., and Zhang, T.-S., Stochastic calculus for symmetric Markov processes, Ann. Probab. 36 (2008), 931970; Correction, Ann. Probab. 40 (2012), 1375-1376. MR 2408579; MR 2962095. DOI 10.1214/07-AOP347.CrossRefGoogle Scholar
[5] Chen, Z.-Q., Fitzsimmons, P. J., Kuwae, K., and Zhang, T.-S., On general perturbation of symmetric Markov processes, J. Math. Pures Appl. (9) 92 (2009), 363374. MR 2569183. DOI 10.1016/j.matpur.2009.05.012.Google Scholar
[6] Chen, Z. Q., Ma, Z. M., and Röckner, M., Quasi-homeomorphisms of Dirichlet forms, Nagoya Math. J. 136 (1994), 115. MR 1309378.Google Scholar
[7] Chen, Z.-Q. and Zhang, T., Time-reversal and elliptic boundary value problems, Ann. Probab. 37 (2009), 1008-1043. MR 2537548. DOI 10.1214/08-AOP427.Google Scholar
[8] Fukushima, M., Ōshima, Y., and Takeda, M., Dirichlet Forms and Symmetric Markov Processes, de Gruyter Stud. Math. 19, de Gruyter, Berlin, 2011. MR 1303354. DOI 10.1515/9783110889741.Google Scholar
[9] He, S. W., Wang, J. G., and Yan, J. A., Semimartingale Theory and Stochastic Calculus, Science Press, Beijing, 1992. MR 1219534.Google Scholar
[10] Jacod, J. and Shiryaev, A. N., Limit Theorems for Stochastic Processes, Grundlehren Math. Wiss. 288, Springer, Berlin, 1987. MR 0959133. DOI 10.1007/978-3-662-02514-7. Google Scholar
[11] Kuwae, K., Functional calculus for Dirichlet forms, Osaka J. Math. 35 (1998), 683715. MR 1648400.Google Scholar
[12] Kuwae, K., Maximum principles for subharmonic functions via local semi-Dirichlet forms, Canad. J. Math. 60 (2008), 822874. MR 2432825. DOI 10.4153/CJM-2008-036-8.Google Scholar
[13] Kuwae, K., Stochastic calculus over symmetric Markov processes without time reversal, Ann. Probab. 38 (2010), 15321569. MR 2663636. DOI 10.1214/09-AOP516.Google Scholar
[14] Kuwae, K., Errata to Stochastic calculus over symmetric Markov processes without time reversal, Ann. Probab. 40 (2012), 27052706. MR 2663636. DOI 10.1214/09-AOP516.CrossRefGoogle Scholar
[15] Lyons, T. J. and Zhang, T. S., Decomposition of Dirichlet processes and its application, Ann. Probab. 22 (1994), 494524. MR 1258888.CrossRefGoogle Scholar
[16] Lyons, T. J. and Zheng, W. A., “A crossing estimate for the canonical process on a Dirichlet space and a tightness result” in Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987), Astérisque 157-158, Soc. Math. France, Paris, 1988, 249-271. MR 0976222.Google Scholar
[17] Ma, Z. M. and Röckner, M., Introduction to the Theory of (Nonsymmetric) Dirichlet Forms, Springer, Berlin, 1992. MR 1214375. DOI 10.1007/978-3-642-77739-4.Google Scholar
[18] Nakao, S., Stochastic calculus for continuous additive functionals of zero energy, Z. Wahrsch. Verw. Gebiete 68 (1985), 557578. MR 0772199. DOI 10.1007/BF00535345.CrossRefGoogle Scholar
[19] Sato, K., Lévy Processes and Infinitely Divisible Distributions, Cambridge Stud. Adv. Math. 68, Cambridge University Press, Cambridge, 1999. MR 1739520.Google Scholar
[20] Sharpe, M., General Theory of Markov Processes, Pure Appl. Math. 133, Academic Press, Boston, 1988. MR 0958914.Google Scholar
[21] Takeda, M., “On exit times of symmetric Lévy processes from connected open sets” in Probability Theory and Mathematical Statistics (Tokyo, 1995), World Scientific, River Edge, NJ, 1996, 478484. MR 1467965.Google Scholar
[22] Walsh, J. B., Markov processes and their functionals in duality, Z. Wahrsch. Verw. Gebiete 24 (1972), 229246. MR 0329056.CrossRefGoogle Scholar
[23] Zhao, Z., Subcriticality and gaugeability of the Schrödinger operator, Trans. Amer. Math. Soc. 334, no. 1 (1992), 7596. MR 1068934. DOI 10.2307/2153973.Google Scholar