Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T09:57:49.097Z Has data issue: false hasContentIssue false

TILTING COMPLEXES AND CODIMENSION FUNCTIONS OVER COMMUTATIVE NOETHERIAN RINGS

Published online by Cambridge University Press:  15 March 2024

MICHAL HRBEK*
Affiliation:
Institute of Mathematics Czech Academy of Sciences Žitná 25 115 67 Prague Czech Republic
TSUTOMU NAKAMURA
Affiliation:
Department of Mathematics, Faculty of Education Mie University 1577 Kurimamachiya-cho Tsu, Mie 514-8507 Japan nakamura@edu.mie-u.ac.jp Osaka Central Advanced Mathematical Institute Osaka Metropolitan University 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 Japan t.nakamura.math@gmail.com
JAN ŠŤOVÍČEK
Affiliation:
Department of Algebra, Faculty of Mathematics and Physics Charles University Sokolovská 83 186 75, Praha Czech Republic stovicek@karlin.mff.cuni.cz

Abstract

In the derived category of a commutative noetherian ring, we explicitly construct a silting object associated with each sp-filtration of the Zariski spectrum satisfying the “slice” condition. Our new construction is based on local cohomology and it allows us to study when the silting object is tilting. For a ring admitting a dualizing complex, this occurs precisely when the sp-filtration arises from a codimension function on the spectrum. In the absence of a dualizing complex, the situation is more delicate and the tilting property is closely related to the condition that the ring is a homomorphic image of a Cohen–Macaulay ring. We also provide dual versions of our results in the cosilting case.

Type
Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of Foundation Nagoya Mathematical Journal

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Dedicated to Lidia Angeleri Hügel on the occasion of her 60th birthday

M. Hrbek was supported by the GAČR project 20-13778S and RVO: 67985840. T. Nakamura was supported by PRIN-2017 “Categories, Algebras: Ring-Theoretical and Homological Approaches (CARTHA),” Grant-in-Aid for JSPS Fellows JP20J01865, and Grant-in-Aid for Early-Career Scientists JP23K12954. J. Šťovíček was supported by the GAČR project 20-13778S.

References

Aihara, T. and Iyama, O., Silting mutation in triangulated categories , J. Lond. Math. Soc. (2) 85 (2012), no. 3, 633668.CrossRefGoogle Scholar
Alonso Tarrío, L., López, A. J., and Lipman, J., Local homology and cohomology on schemes , Ann. Sci. École Norm. Sup. (4) 30 (1997), no. 1, 139.CrossRefGoogle Scholar
Alonso Tarrío, L., López, A. J., and Salorio, M. J. S., Construction of $t$ -structures and equivalences of derived categories , Trans. Amer. Math. Soc. 355 (2003), no. 6, 25232543.CrossRefGoogle Scholar
Alonso Tarrío, L., López, A. J., and Saorín, M., Compactly generated $t$ -structures on the derived category of a Noetherian ring , J. Algebra 324 (2010), no. 3, 313346.CrossRefGoogle Scholar
Angeleri Hügel, L., “Infinite dimensional tilting theory” in Advances in representation theory of algebras, EMS Ser. Congr. Rep., European Mathematical Society, Zürich, 2013, pp. 137.Google Scholar
Angeleri Hügel, L., Silting objects , Bull. Lond. Math. Soc. 51 (2019), no. 4, 658690.CrossRefGoogle Scholar
Angeleri Hügel, L. and Coelho, F. U., Infinitely generated tilting modules of finite projective dimension , Forum Math. 13 (2001), no. 2, 239250.Google Scholar
Angeleri Hügel, L., Herbera, D., and Trlifaj, J., Tilting modules and Gorenstein rings , Forum Math. 18 (2006), no. 2, 211229.Google Scholar
Angeleri Hügel, L. and Hrbek, M., International Mathematics Research Notices, Vol. 2017 (2017), no. 13, Oxford University Press, Oxford. 41314151.Google Scholar
Angeleri Hügel, L. and Hrbek, M., Parametrizing torsion pairs in derived categories , Represent. Theory 25 (2021), 679731.CrossRefGoogle Scholar
Angeleri Hügel, L., Koenig, S., and Liu, Q., Recollements and tilting objects , J. Pure Appl. Algebra 215 (2011), no. 4, 420438.CrossRefGoogle Scholar
Angeleri Hügel, L., Koenig, S., Liu, Q., and Yang, D., Ladders and simplicity of derived module categories , J. Algebra 472 (2017), 1566.CrossRefGoogle Scholar
Angeleri Hügel, L., Laking, R., Šťovíček, J., and Vitória, J., Mutation and torsion pairs, preprint, arXiv:2201.02147, 2022.Google Scholar
Angeleri Hügel, L., Marks, F., and Vitória, J., Silting modules , Int. Math. Res. Not. IMRN 2016 (2016), no. 4, 12511284.CrossRefGoogle Scholar
Angeleri Hügel, L., Marks, F., and Vitória, J., Torsion pairs in silting theory , Pacific J. Math. 291 (2017), no. 2, 257278.CrossRefGoogle Scholar
Angeleri Hügel, L., Pospíšil, D., Šťovíček, J., and Trlifaj, J., Tilting, cotilting, and spectra of commutative Noetherian rings , Trans. Amer. Math. Soc. 366 (2014), no. 7, 34873517.CrossRefGoogle Scholar
Angeleri Hügel, L. and Sánchez, J., Tilting modules arising from ring epimorphisms , Algebr. Represent. Theory 14 (2011), no. 2, 217246.CrossRefGoogle Scholar
Angeleri Hügel, L. and Saorín, M., t-Structures and cotilting modules over commutative Noetherian rings , Math. Z. 277 (2014), nos. 3–4, 847866.CrossRefGoogle Scholar
Avramov, L. L., Iyengar, S. B., and Lipman, J., Reflexivity and rigidity for complexes, I. Commutative rings , Algebra Number Theory 4 (2010), no. 1, 4786.CrossRefGoogle Scholar
Avramov, L. L. and Martsinkovsky, A., Absolute, relative, and Tate cohomology of modules of finite Gorenstein dimension , Proc. London Math. Soc. (3) 85 (2002), no. 2, 393440.CrossRefGoogle Scholar
Bass, H., Injective dimension in Noetherian rings , Trans. Amer. Math. Soc. 102 (1962), no. 1, 1829.CrossRefGoogle Scholar
Bazzoni, S. and Hrbek, M., Definable coaisles over rings of weak global dimension at most one , Publ. Mat. 65 (2021), no. 1, 165241.CrossRefGoogle Scholar
Bazzoni, S., Mantese, F., and Tonolo, A., Derived equivalence induced by infinitely generated $n$ -tilting modules , Proc. Amer. Math. Soc. 139 (2011), no. 12, 42254234.CrossRefGoogle Scholar
Bazzoni, S. and Pavarin, A., Recollements from partial tilting complexes , J. Algebra 388 (2013), 338363.CrossRefGoogle Scholar
Beĭlinson, A. A., Bernstein, J., and Deligne, P., “Faisceaux pervers” in Analysis and topology on singular spaces, I (Luminy, 1981), Astérisque, Vol. 100, Société Mathématique de France, Paris, 1982, pp. 5171.Google Scholar
Benson, D., Iyengar, S. B., and Krause, H., Local cohomology and support for triangulated categories , Ann. Sci. Éc. Norm. Supér. (4) 41 (2008), no. 4, 573619.Google Scholar
Benson, D. J., Iyengar, S., and Krause, H., Representations of finite groups: Local cohomology and support, Oberwolfach Seminars, 43, Birkhäuser/Springer Basel AG, Basel, 2012.Google Scholar
Benson, D. J., Iyengar, S. B., and Krause, H., Colocalizing subcategories and cosupport , J. Reine Angew. Math. 673 (2012), 161207.Google Scholar
Breaz, S. and Pop, F., Cosilting modules , Algebr. Represent. Theory 20 (2017), no. 5, 13051321.CrossRefGoogle Scholar
Bruns, W. and Herzog, J., Cohen–Macaulay rings, revised ed., Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1998.Google Scholar
Bühler, T., Exact categories , Expo. Math. 28 (2010), no. 1, 169. MR 2606234CrossRefGoogle Scholar
Chen, H. and Xi, C., Good tilting modules and recollements of derived module categories , Proc. Lond. Math. Soc. (3) 104 (2012), no. 5, 959996.CrossRefGoogle Scholar
Chen, H. and Xi, C., Good tilting modules and recollements of derived module categories, II , J. Math. Soc. Japan 71 (2019), no. 2, 515554.CrossRefGoogle Scholar
Christensen, L. W. and Holm, H., Ascent properties of Auslander categories , Canad. J. Math. 61 (2009), no. 1, 76108.CrossRefGoogle Scholar
Christensen, L. W. and Kato, K., Totally acyclic complexes and locally Gorenstein rings , J. Algebra Appl. 17 (2018), no. 3, 1850039.CrossRefGoogle Scholar
Colpi, R. and Trlifaj, J., Tilting modules and tilting torsion theories , J. Algebra 178 (1995), no. 2, 614634.CrossRefGoogle Scholar
Conrad, B., Grothendieck duality and base change, Lecture Notes in Mathematics, 1750, Springer-Verlag, Berlin, 2000.Google Scholar
Čoupek, P. and Šťovíček, J., Cotilting sheaves on Noetherian schemes , Math. Z. 296 (2020), 275312.CrossRefGoogle Scholar
Dao, H. and Takahashi, R., Classification of resolving subcategories and grade consistent functions , Int. Math. Res. Not. IMRN 2015 (2015), no. 1, 119149.CrossRefGoogle Scholar
Dwyer, W. G. and Greenlees, J. P. C., Complete modules and torsion modules , Amer. J. Math. 124 (2002), no. 1, 199220.CrossRefGoogle Scholar
Enochs, E. E. and Iacob, A., Gorenstein injective covers and envelopes over Noetherian rings , Proc. Amer. Math. Soc. 143 (2015), no. 1, 512.CrossRefGoogle Scholar
Enochs, E. E. and Jenda, O. M. G., Relative homological algebra, Vol. 1, second revised and extended ed., De Gruyter Expositions in Mathematics, 30, Walter de Gruyter GmbH & Co. KG, Berlin, 2011.Google Scholar
Enochs, E. E., Jenda, O. M. G., and Xu, J., Orthogonality in the category of complexes , Math. J. Okayama Univ. 38 (1996), no. 1, 2546.Google Scholar
Ferrand, D. and Raynaud, M., Fibres formelles d’un anneau local noethérien , Ann. Sci. École Norm. Sup. (4), 3 (1970), 295311.CrossRefGoogle Scholar
Foxby, H.-B., Bounded complexes of flat modules , J. Pure Appl. Algebra 15 (1979), no. 2, 149172.CrossRefGoogle Scholar
Foxby, H.-B. and Iyengar, S., “Depth and amplitude for unbounded complexes” in Commutative algebra (Grenoble/Lyon, 2001), Contemp. Math., 331, American Mathematical Society, Providence, RI, 2003, pp. 119137.CrossRefGoogle Scholar
Göbel, R. and Trlifaj, J., Approximations and endomorphism algebras of modules: Volume 1 – Approximations, second revised and extended ed., De Gruyter Expositions in Mathematics, 41, Walter de Gruyter GmbH & Co. KG, Berlin, 2012.Google Scholar
Gordon, R. and Robson, J. C., Krull dimension , Mem. Amer. Math. Soc. 133 (1973), no. 133, ii+78.Google Scholar
Goto, S. and Nishida, K., Towards a theory of Bass numbers with application to Gorenstein algebras , Colloq. Math. 91 (2002), no. 2, 191253.CrossRefGoogle Scholar
Greenlees, J. P. C. and May, J. P., Derived functors of $I$ -adic completion and local homology , J. Algebra 149 (1992), no. 2, 438453.CrossRefGoogle Scholar
Gutiérrez, J. J., Röndigs, O., Spitzweck, M., and Østvær, P. A., Motivic slices and coloured operads , J. Topol. 5 (2012), no. 3, 727755.CrossRefGoogle Scholar
Hartshorne, R., Residues and duality: Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, with an appendix by Deligne, P., Lecture Notes in Mathematics, 20, Springer-Verlag, Berlin–New York, 1966.Google Scholar
Hartshorne, R., Algebraic geometry, Graduate Texts in Mathematics, 52, Springer-Verlag, New York–Heidelberg, 1977.Google Scholar
Heard, D., On equivariant and motivic slices , Algebr. Geom. Topol. 19 (2019), no. 7, 36413681.CrossRefGoogle Scholar
Heinzer, W., Rotthaus, C., and Wiegand, S., Intermediate rings between a local domain and its completion. II , Illinois J. Math. 45 (2001), no. 3, 965979.CrossRefGoogle Scholar
Hill, M. A., Homology, homotopy and applications, 14 (2012), no. 2, International Press of Boston, Somerville, Massachusetts. 143166.Google Scholar
Hill, M. A., Hopkins, M. J., and Ravenel, D. C., On the nonexistence of elements of Kervaire invariant one , Ann. of Math. (2) 184 (2016), no. 1, 1262.Google Scholar
Holm, H., Gorenstein homological dimensions , J. Pure Appl. Algebra 189 (2004), nos. 1–3, 167193.CrossRefGoogle Scholar
Holm, H. and Jørgensen, P., Cotorsion pairs induced by duality pairs , J. Commut. Algebra 1 (2009), no. 4, 621633.CrossRefGoogle Scholar
Hrbek, M., Topological endomorphism rings of tilting complexes, preprint, arXiv:2205.11105, 2022.Google Scholar
Hrbek, M., Hu, J. H., and Zhu, R., Gluing compactly generated t-structures over stalks of affine schemes, to appear in Israel J. Math., arXiv:2101.09966, 2021.Google Scholar
Hrbek, M. and Nakamura, T., Telescope conjecture for homotopically smashing t-structures over commutative noetherian rings , J. Pure Appl. Algebra 225 (2021), no. 4, 106571, 13 pp.CrossRefGoogle Scholar
Iyengar, S. and Krause, H., Acyclicity versus total acyclicity for complexes over Noetherian rings , Doc. Math. 11 (2006), 207240.CrossRefGoogle Scholar
Iyengar, S. B., Leuschke, G. J., Leykin, A., Miller, C., Miller, E., Singh, A. K., and Walther, U., Twenty-four hours of local cohomology, Graduate Studies in Mathematics, 87, American Mathematical Society, Providence, RI, 2007.Google Scholar
Kanda, R. and Nakamura, T., Flat cotorsion modules over Noether algebras , Doc. Math. 27 (2022), 11011167.Google Scholar
Kaplansky, I., The homological dimension of a quotient field , Nagoya Math. J. 27 (1966), 139142.CrossRefGoogle Scholar
Kashiwara, M. and Schapira, P., Sheaves on manifolds , with a chapter in French by Houzel, Christian, Corrected reprint of the 1990 original, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 292, Springer-Verlag, Berlin, 1994.Google Scholar
Kashiwara, M. and Schapira, P., Categories and sheaves, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 232, Springer-Verlag, Berlin, 2006.CrossRefGoogle Scholar
Kawasaki, T., On arithmetic Macaulayfication of Noetherian rings , Trans. Amer. Math. Soc. 354 (2002), no. 1, 123149.CrossRefGoogle Scholar
Kawasaki, T., Finiteness of Cousin cohomologies , Trans. Amer. Math. Soc. 360 (2008), no. 5, 27092739.CrossRefGoogle Scholar
Keller, B. and Vossieck, D., Aisles in derived categories, Deuxième Contact Franco-Belge en Algèbre (Faulx-les-Tombes, 1987) , Bull. Soc. Math. Belg. Sér. A 40 (1988), no. 2, 239253.Google Scholar
Krause, H., The stable derived category of a Noetherian scheme , Compos. Math. 141 (2005), no. 5, 11281162.CrossRefGoogle Scholar
Krause, H., Derived categories, resolutions, and Brown representability, Interactions between homotopy theory and algebra, Contemp. Math., 436, American Mathematical Society, Providence, RI, 2007, pp. 101139.Google Scholar
Krause, H., “Localization theory for triangulated categories” in Triangulated categories, London Math. Soc. Lecture Note Ser., 375, Cambridge University Press, Cambridge, 2010, pp. 161235.CrossRefGoogle Scholar
Laking, R., Purity in compactly generated derivators and t-structures with Grothendieck hearts , Math. Z. 295 (2020), nos. 3–4, 16151641. MR 4125704CrossRefGoogle Scholar
Lam, T. Y., A first course in noncommutative rings, Graduate Texts in Mathematics, 131, Springer-Verlag, New York, 1991.Google Scholar
Lipman, J., “Lectures on local cohomology and duality” in Local cohomology and its applications (Guanajuato, 1999), Lecture Notes in Pure and Applied Mathematics, 226, Dekker, New York, 2002, pp. 3989.Google Scholar
Marks, F. and Vitória, J., Silting and cosilting classes in derived categories , J. Algebra 501 (2018), 526544.CrossRefGoogle Scholar
Matsumura, H., Commutative ring theory, translated from the Japanese by M. Reid, second ed., Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, Cambridge, 1989.Google Scholar
Miyachi, J., Duality for derived categories and cotilting bimodules , J. Algebra 185 (1996), no. 2, 583603.CrossRefGoogle Scholar
Murfet, D., The mock homotopy category of projectives and Grothendieck duality. Ph.D. thesis, Australian National University, 2007, available at http://therisingsea.org/thesis.pdf.Google Scholar
Nagata, M., Local rings, Corrected reprint, Robert E. Krieger Publishing Co., Huntington, NY, 1975.Google Scholar
Nakamura, T. and Thompson, P., Minimal semi-flat-cotorsion replacements and cosupport , J. Algebra 562 (2020), 587620.CrossRefGoogle Scholar
Nakamura, T. and Yoshino, Y., A local duality principle in derived categories of commutative Noetherian rings , J. Pure Appl. Algebra 222 (2018), no. 9, 25802595.CrossRefGoogle Scholar
Nakamura, T. and Yoshino, Y., Localization functors and cosupport in derived categories of commutative Noetherian rings , Pacific J. Math. 296 (2018), no. 2, 405435.CrossRefGoogle Scholar
Neeman, A., The chromatic tower for $D(R)$ , With an appendix by M. Bökstedt, Topology 31 (1992), no. 3, 519532.CrossRefGoogle Scholar
Neeman, A., The Grothendieck duality theorem via Bousfield’s techniques and Brown representability , J. Amer. Math. Soc. 9 (1996), no. 1, 205236.CrossRefGoogle Scholar
Neeman, A., Triangulated categories, Annals of Mathematics Studies, 148, Princeton University Press, Princeton, NJ, 2001.Google Scholar
Neeman, A., The homotopy category of flat modules, and Grothendieck duality , Invent. Math. 174 (2008), no. 2, 255308.CrossRefGoogle Scholar
Neeman, A., “Derived categories and Grothendieck duality” in Triangulated categories, London Mathematical Society Lecture Note Series, 375, Cambridge University Press, Cambridge, 2010, pp. 290350.CrossRefGoogle Scholar
Neeman, A., Rigid dualizing complexes , Bull. Iranian Math. Soc. 37 (2011), no. 2, 273290.Google Scholar
Neeman, A., Colocalizing subcategories of $\mathbf{D}(R)$ , J. Reine Angew. Math. 653 (2011), 221243.Google Scholar
Neeman, A., The $t$ -structures generated by objects , Trans. Amer. Math. Soc. 374 (2021), no. 11, 81618175.CrossRefGoogle Scholar
Nicolás, P., Saorín, M., and Zvonareva, A., Silting theory in triangulated categories with coproducts , J. Pure Appl. Algebra 223 (2019), no. 6, 22732319.CrossRefGoogle Scholar
Nishimura, J., A few examples of local rings, I , Kyoto J. Math. 52 (2012), no. 1, 5187.CrossRefGoogle Scholar
Olberding, B., “Noetherian rings without finite normalization” in Progress in commutative algebra 2, Walter de Gruyter, Berlin, 2012, pp. 171203.Google Scholar
Osofsky, B. L., Homological dimension and the continuum hypothesis , Trans. Amer. Math. Soc. 132 (1968), no. 1, 217230.CrossRefGoogle Scholar
Pavon, S. and Vitória, J., Hearts for commutative Noetherian rings: Torsion pairs and derived equivalences , Doc. Math. 26 (2021), 829871.Google Scholar
Positselski, L. and Šťovíček, J., $\infty$ -tilting theory , Pacific J. Math. 301 (2019), no. 1, 297334. MR 4007380CrossRefGoogle Scholar
Positselski, L. and Šťovíček, J., The tilting-cotilting correspondence , Int. Math. Res. Not. IMRN 1 (2021), 191276. MR 4198495Google Scholar
Pospíšil, D. and Trlifaj, J., Tilting for regular rings of Krull dimension two , J. Algebra 336 (2011), 184199. MR 2802536CrossRefGoogle Scholar
Prest, M., Purity, spectra and localisation, Encyclopedia of Mathematics and its Applications, 121, Cambridge University Press, Cambridge, 2009.Google Scholar
Psaroudakis, C. and Vitória, J., Realisation functors in tilting theory , Math. Z. 288 (2018), nos. 3–4, 9651028.CrossRefGoogle Scholar
Raynaud, M. and Gruson, L., Critères de platitude et de projectivité. Techniques de “platification” d’un module , Invent. Math. 13 (1971), 189.CrossRefGoogle Scholar
Rickard, J., Morita theory for derived categories , J. London Math. Soc. (2) 39 (1989), no. 3, 436456. MR 1002456CrossRefGoogle Scholar
Saorín, M. and Šťovíček, J., $t$ -Structures with Grothendieck hearts via functor categories , Selecta Math. (N.S.) 29 (2023), no. 5, Paper No. 77. MR 4655162CrossRefGoogle Scholar
Saorín, M., Šťovíček, J., and Virili, S., $t$ -Structures on stable derivators and Grothendieck hearts , Adv. Math. 429 (2023), Paper No. 109139, 70. MR 4608346CrossRefGoogle Scholar
Schenzel, P. and Simon, A.-M., Completion, Čech and local homology and cohomology: Interactions between them, Springer Monographs in Mathematics, Springer, Cham, 2018.Google Scholar
Sharp, R. Y., The Cousin complex for a module over a commutative Noetherian ring , Math. Z. 112 (1969), 340356.CrossRefGoogle Scholar
Sharp, R. Y., A commutative Noetherian ring which possesses a dualizing complex is acceptable , Math. Proc. Cambridge Philos. Soc. 82 (1977), no. 2, 197213.CrossRefGoogle Scholar
Sharp, R. Y. Local cohomology and the Cousin complex for a commutative Noetherian ring , Math. Z. 153 (1977), no. 1, 1922.CrossRefGoogle Scholar
Sharp, R. Y., “Necessary conditions for the existence of dualizing complexes in commutative algebra” in Séminaire d’Algèbre Paul Dubreil 31ème année (Paris, 1977–1978), Lecture Notes in Mathematics, 740, Springer, Berlin, 1979, pp. 213229.CrossRefGoogle Scholar
Spaltenstein, N., Resolutions of unbounded complexes , Compos. Math. 65 (1988), no. 2, 121154.Google Scholar
Šťovíček, J. and Pospíšil, D., On compactly generated torsion pairs and the classification of co- $t$ -structures for commutative noetherian rings , Trans. Amer. Math. Soc. 368 (2016), no. 9, 63256361.CrossRefGoogle Scholar
Takahashi, R., Faltings’ annihilator theorem and $t$ -structures of derived categories , Math. Z. 304 (2023), no. 1, Paper No. 10, 13. MR 4575439CrossRefGoogle Scholar
The Stacks project authors, The stacks project. https://stacks.math.columbia.edu.Google Scholar
Ullman, J., On the slice spectral sequence , Algebr. Geom. Topol. 13 (2013), no. 3, 17431755.CrossRefGoogle Scholar
Virili, S., Morita theory for stable derivators, preprint, arXiv:1807.01505v2, 2018.Google Scholar
Wei, J., Semi-tilting complexes , Israel J. Math. 194 (2013), no. 2, 871893.CrossRefGoogle Scholar
Xu, J., Flat covers of modules, Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996.Google Scholar
Zhang, P. and Wei, J., Cosilting complexes and AIR-cotilting modules , J. Algebra 491 (2017), 131.CrossRefGoogle Scholar