Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-25T07:09:14.623Z Has data issue: false hasContentIssue false

A histological study of a femur of Plagiosuchus, a Middle Triassic temnospondyl amphibian from southern Germany, using thin sections and micro-CT scanning

Published online by Cambridge University Press:  25 March 2014

D. Konietzko-Meier*
Affiliation:
Uniwersytet Opolski, Katedra Biosystematyki, ul. Oleska 22, 45–052 Opole, Poland Steinmann Institut, Universität Bonn, Nussallee 8, 53115 Bonn, Germany
A. Schmitt
Affiliation:
Steinmann Institut, Universität Bonn, Nussallee 8, 53115 Bonn, Germany

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The histology of a femur of Plagiosuchus, a Middle Triassic temnospondyl amphibian, is described on the basis of two supplementary methods: classic thin sectioning and micro-CT scanning. In addition, the effectiveness of high-resolution micro-CT scanning for histological analysis is assessed. A classic, mid-shaft thin section of the femur was prepared, but prior to slicing two micro-CT scans were made. One of these has an image stack of a total of 1,024 images in the horizontal plane and a slice thickness of 87.8 μm, so that the entire bone could be captured, while the second was at mid-shaft region only, yet with a higher resolution of 28.3 μm and an image stack of 787 images in the horizontal plane. The classic thin section shows a very small medullary region which is surrounded by a layer of endosteal bone. The thick cortex is highly porous with numerous large, mainly longitudinal, vascular canals arranged in layers. In the deepest cortex woven bone occurs and primary osteons had locally started to form (incipient fibro-lamellar bone), which gradually passes into parallel-fibred bone and more lamellar bone close to the outer surface. Remains of a Kastschenko line were identified, enabling a reconstruction of the entire growth record. Five Lines of Arrested Growth (LAG) could be counted. The micro-CT scan enabled observations of the ontogenetic growth stages and calculation of growth rate on the basis of a single specimen. The micro-CT scan permitted a reconstruction of the ontogenetic development and the exact deposition rate per annum. Moreover, at higher resolution the micro-CT scan revealed data on micro-anatomical characters, such as porosity and skeletochronology (growth mark count). In conclusion, micro-CT scans do provide an alternative in cases where thin sectioning of the original bone is not possible.

Type
Research Article
Copyright
Copyright © Stichting Netherlands Journal of Geosciences 2013

Footnotes

In: Mulder, E.W.A., Jagt, J.W.M. & Schulp, A.S. (eds): The Sunday's child of Dutch earth sciences – a tribute to Bert Boekschoten on the occasion of his 80th birthday.

References

Abel, O., 1919. Die Stämme der Wirbeltiere. De Gruyter (Berlin), 914 pp.Google Scholar
Arbour, V.M., 2009. Estimating impact forces of tail club strikes by ankylosaurid dinosaurs. PLoS ONE 4(8): e6738.CrossRefGoogle ScholarPubMed
Boy, J.A., 1988. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon-Perm). 1. Sclerocephalus . Paläontologische Zeitschrift 62: 107132.Google Scholar
Boy, J.A., 1990. Über einige Vertreter der Eryopoidea (Amphibia: Temnospondyli) aus dem europäischen Rotliegend (?höchstes Karbon-Perm). 3. Onchiodon . Paläontologische Zeitschrift 64: 287312.Google Scholar
Canoville, A. & Laurin, M., 2010. Evolution of humeral microanatomy and lifestyle in amniotes, and some comments on palaeobiological inferences. Biological Journal of the Linnean Society 100: 384406.CrossRefGoogle Scholar
Castanet, J. & Smirina, E., 1990. Introduction to the skeletochronological method in amphibians and reptiles. Annales des Sciences naturelles, Zoologie (13)11: 191196.Google Scholar
Castanet, J., Francillon-Vieillot, H., Meunier, F.J. & De Ricqlès, A., 1993. Bone and individual aging. In: Hall, B.K. (ed.): Bone. Volume 7: Bone Growth-B.CRC Press (Boca Raton): 245283.Google Scholar
Chinsamy, A., Chiappe, L.M. & Dodson, P., 1995. Mesozoic avian bone microstructure: physiological implications. Paleobiology 21: 561574.Google Scholar
Curry, K., 1988. Histological quantification of growth rates in Apatosaurus. Abstracts of Papers, 58th Annual Meeting of the Society of Vertebrate Paleontology: 36A.Google Scholar
Curry, K.A., 1990. Ontogenetic histology of Apatosaurus (Dinosauria: Sauropoda): new insights on growth rates and longevity. Journal of Vertebrate Paleontology 19: 654665.Google Scholar
Damiani, R., Schoch, R.R., Hellrung, H., Werneburg, R. & Gastou, S., 2009. The plagiosaurid temnospondyl Plagiosuchus pustuliferus (Amphibia: Temnospondyli) from the Middle Triassic of Germany: anatomy and functional morphology of the skull. Zoological Journal of the Linnean Society 155: 348373.Google Scholar
De Buffrénil, V. & Mazin, J.-M., 1992. Contribution de l'histologie osseuse à l–interpretation paléobiologique du genre Placodus Agassiz, 1833 (Reptilia, Placodontia). Revue de Paléobiologie 11: 397407.Google Scholar
De Ricqlès, A. & De Buffrénil, V., 2001. Bone histology, heterochronies and the return of tetrapods to life in water; where are we? In: Mazin, J.M. & De Buffrénil, V. (eds): Secondary adaptation of tetrapods to life in water. F. Pfeil (München): 289306.Google Scholar
De Ricqlès, A., Padian, K., Horner, J.R., Lamm, E.T. & Myhrvold, N., 2003. Osteohistology of Confuciusornis sanctus (Theropoda: Aves). Journal of Vertebrate Paleontology 23: 373386.CrossRefGoogle Scholar
DeFauw, S.L., 1989. Temnospondyl amphibians: a new perspective on the last phases in the evolution of the Labyrinthodontia. Michigan Academician 21: 722.Google Scholar
Dzik, J., Sulej, T. & Niedźwiedzki, G., 2008. A dicynodont-theropod association in the latest Triassic of Poland. Acta Palaeontologica Polonica 53: 733738.CrossRefGoogle Scholar
Erickson, G.M., 2001. The bite of Allosaurus. Nature 409: 987988.Google Scholar
Erickson, G.M., Makovicky, P.J., Currie, P.J., Norell, M.A., Yerby, S.A. & Brochu, C.A., 2004. Gigantism and comparative life-history parameters of tyrannosaurid dinosaurs. Nature 430: 772775.Google Scholar
Fraas, E., 1889. Die Labyrinthodonten der schwäbischen Trias. Palaeontographica 36: 1158.Google Scholar
Fraas, E., 1913. Neue Labyrinthodonten aus der Schwäbischen Trias. Palaeontographica 60: 275294.Google Scholar
Francillon-Vieillot, H., De Buffrénil, V., Castanet, J., Géraudie, J., Meunier, F.J., Sire, J.Y., Zylberberg, L. & De Ricqlès, A., 1990. Microstructure and mineralization of vertebrate skeletal tissues. In: Carter, J.G. (ed.): Skeletal biomineralization: patterns, processes and evolutionary trends, Vol. I. Van Nostrand Reinhold (New York): 471530.Google Scholar
Geyer, G., Hautmann, M., Hagdorn, H., Ockert, W. & Streng, M., 2005. Wellpreserved mollusks from the Lower Keuper (Ladinian) of Hohenlohe (southwest Germany). Paläontologische Zeitschrift 79: 429460.CrossRefGoogle Scholar
Hagdorn, H., 1980. Saurierreste ans dem Lettenkeuper im Landkreis Schwäbisch Hall. Der Haalquel 132(6): 2123.Google Scholar
Haines, R.W., 1942. The evolution of epiphysis and of endochondrial bone. Biological Reviews 17: 267291.Google Scholar
Hayashi, S., Takemura, T., Endo, K. & Manabe, M., 2005. Utility of the X-ray CT system on bone fossils; an example of Stegosaurus osteoderms. Chishitsu News 6 (610): 4549.Google Scholar
Hellrung, H., 2003. Gerrothorax pustuloglomeratus, ein Temnospondyle (Amphibia) mit knöcherner Branchialkammer aus dem Unteren Keuper von Kupferzell (Süddeutschland). Stuttgarter Beiträge zur Naturkunde B39: 1130.Google Scholar
Holdsworth, D.W. & Thornton, M.M., 2002. Micro-CT in small animal and specimen imaging. Trends in Biotechnology 2002: 20 (8 Suppl.): S34S39.Google Scholar
Houssaye, A., Xu, F., Helfen, L., De Buffrénil, V., Baumbach, T. & Tafforeau, P., 2011. Three-dimensional pelvis and limb anatomy of the Cenomanian hind-limbed snake Eupodophis descouensi (Squamata, Ophidia) revealed by synchrotron-radiation computed laminography. Journal of Vertebrate Paleontology 31: 16.Google Scholar
Jaekel, O., 1913. Über die Wirbeltierfunde in der oberen Trias von Halberstadt. Paläontologische Zeitschrift 1: 155215.Google Scholar
Jenkins, F.A. Jr, Shubin, N.H. & Amaral, W.W., 1994. Late Triassic continental vertebrates and depositional environments of the Fleming Fjord Formation, Jameson Land, East Greenland. Meddelelser om Grønland, Geoscience 32: 125.Google Scholar
Jenkins, F.A. Jr, Shubin, N.H., Gatesy, S.M. & Warren, A., 2009. Gerrothorax pulcherrimus from the Upper Triassic Fleming Fiord Formation of East Greenland and a reassessment of the contribution of head lifting to feeding in temnospondyls. Journal of Vertebrate Paleontology 26: 223247.Google Scholar
Kastschenko, N., 1881. Über die Genese und Architektur der Batrachierknochen. Archiv für mikroskopische Anatomie 19: 352.Google Scholar
Kin, A., Blazejowski, B. & Binkowski, M.M., 2012. The ‘Polish Solnhofen’: a long awaited alternative? Geology Today 28: 9194.Google Scholar
Klein, N., 2010. Long bone histology of Sauropterygia from the Lower Muschelkalk of the Germanic Basin provides unexpected implications for phylogeny. PLoS ONE 5(7), e11613. doi:10.1371/journal.pone.0011613.Google Scholar
Klein, N. & Sander, M., 2008. Ontogenetic stages in the long bone histology of sauropod dinosaurs. Paleobiology 34: 247263.Google Scholar
Köhler, M., Marín-Moratalla, N., Jordana, X. & Aanes, R., 2012. Seasonal bone growth and physiology in endotherms shed light on dinosaur physiology. Nature 487: 358361.Google Scholar
Konietzko-Meier, D. & Klein, N., 2013. Unique growth pattern of Metoposaurus diagnosticus krasiejowensis (Amphibia, Temnospondyli) from the Upper Triassic of Krasiejów, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology 370: 145157.Google Scholar
Konzhukova, E.D., 1955. The Permian and Triassic labyrinthodonts of the Volga Basin and Cis-Urals. Trudy Paleozoologicheskogo Instituta, Akademia Nauk SSSR 49: 588 (in Russian).Google Scholar
Kuhn, J.L., Goldstein, S.A., Feldkamp, L.A., Goulet, R.W. & Jesion, G., 1990. Evaluation of a micro-computed tomography system to study trabecular bone-structure. Journal of Orthopaedic Research 8: 833842.Google Scholar
Molnar, J.L., Pierce, S.E., Clack, J.A. & Hutchinson, J.R., 2012. Idealized landmark-based geometric reconstructions of poorly preserved fossil material: a case study of an early tetrapod vertebra. Palaeontologia Electronica 15: 118.Google Scholar
Moreno, K., Carrano, M.T. & Snyder, R., 2007. Morphological changes in pedal phalanges through ornithopod dinosaur evolution: a biomechanical approach. Journal of Morphology 268: 5063.Google Scholar
Nilsson, T., 1934. Vorläufige Mitteilung über einen Stegocephalenfund aus dem Rhät Schonens. Geologiska Föreningens i Stockholm Förhandlingar 56: 428442.Google Scholar
Nilsson, T., 1937. Ein Plagiosauride aus dem Rhät Schonens. Beiträge zur Kenntnis der Organisation der Stegocephalengruppe Brachyopoidei. Meddelanden från Lunds Geologisk-Mineralogiska Institution 72: 175.Google Scholar
Nilsson, T., 1946. A new find of Gerrothorax rhaeticus Nilsson, a plagiosaurid from the Rhaetic of Scania. Lunds Universitets Årsskrift N.F. 42: 142.Google Scholar
Novikov, I.V. & Shishkin, M.A., 1992. New Middle Triassic labyrinthodonts from the Pechora Urals. Paleontological Journal 26: 92102.Google Scholar
Ponce de León, M.S. & Zollikofer, C.P.E, 1999. New evidence from Le Moustier 1: computer-assisted reconstruction and morphometry of the skull. The Anatomical Record 254: 474489.Google Scholar
Rozenblut, B. & Ogielska, M., 2005. Development and growth of long bones in European water frogs (Amphibia: Anura: Ranidae), with remarks on age determination. Journal of Morphology 265: 304317.CrossRefGoogle ScholarPubMed
Ruf, I., Luo, Z. & Martin, T., 2010. CT scanning analysis of the basicranium and the inner ear of Haldanodon exspectatus (Docodonta, Mammalia). Journal of Vertebrate Paleontology, Abstracts and Program 2010: 154A.Google Scholar
Sanchez, S., De Ploëg, G., Clément, G. & Ahlberg, P.E., 2010a. A new tool for determining degrees of mineralization in fossil amphibian skeletons: the example of the Late Palaeozoic branchiosaurid Apateon from the Autun Basin, France. Comptes Rendus Palevol 9: 311317.Google Scholar
Sanchez, S., Germain, D., De Ricqlès, A., Abourachid, A., Goussard, F. & Tafforeau, P., 2010b. Limb-bone histology of temnospondyls: implications for understanding the diversification of palaeoecologies and patterns of locomotion of Permo-Triassic tetrapods. Journal of Evolutionary Biology 23: 20762090.Google Scholar
Sander, P.M., 2000. Long bone histology of the Tendaguru sauropods: implications for growth and biology. Paleobiology 26: 466488.Google Scholar
Sander, P.M., Klein, N., Stein, K. & Wings, O., 2011. Sauropod bone histology and its implications for sauropod biology. In: Klein, N., Remes, K., Gee, C.T. & Sander, P.M. (eds.): Biology of the sauropod dinosaurs: understanding the life of giants. Indiana University Press (Bloomington): 276302.Google Scholar
Sander, P.M., Klein, N., Buffetaut, E., Cuny, G., Suteethorn, V. & LeLoeuff, J., 2004. Adaptive radiation in sauropod dinosaurs: bone histology indicates rapid evolution of giant body size through acceleration. Organisms, Diversity & Evolution 4: 165173.Google Scholar
Schoch, R.R., 2003. Early larval ontogeny of the Permo-Carboniferous temnospondyl Sclerocephalus. Palaeontology 46:10551072.Google Scholar
Schoch, R.R. & Witzmann, F., 2012. Cranial morphology of the plagiosaurid Gerrothorax pulcherrimus as an extreme example of evolutionary stasis. Lethaia 45: 371385.CrossRefGoogle Scholar
Schwarz, C., Ruf, I. & Martin, T., 2010. Micro-CT analysis of the ear region in Heteroxerus costatus (Rodentia, Mammalia). Journal of Vertebrate Paleontology, Abstracts and Program 2010: 160A.Google Scholar
Sellers, W.I., Manning, P.L., Lyson, T., Stevens, K. & Margetts, L., 2009. Virtual palaeontology: gait reconstruction of extinct vertebrates using high performance computing. Palaeontologica Electronica 12(3): 13A. www.palaeo-electronica.org/2009_3/180/.Google Scholar
Shishkin, M.A., 1967. Plagiosaurs from the Triassic of the USSR. Paleontologicheskii Zhurnal 1967(1): 8692 (in Russian).Google Scholar
Shishkin, M.A., 1986. New data on plagiosaurs from the Triassic of the USSR. Byulletin' Moskovskogo Obshchestva Ispytatelej Prirody, Otdel Geologicheskij 61: 97102 (in Russian).Google Scholar
Shishkin, M.A., 1987. Evolution of ancient amphibians. Trudy Paleontologicheskogo Instituta, Akademiia Nauk SSSR 225: 312 (in Russian).Google Scholar
Starck, J.M. & Chinsamy, A., 2002. Bone microstructure and developmental plasticity in birds and other dinosaurs. Journal of Morphology 254: 232246.Google Scholar
Stein, K. & Sander, M., 2009. Histological core drilling: a less destructive method for studying bone histology. In: Brown, M.A., Kane, J.F. & Parker, W.G. (eds): Methods in fossil preparation. Proceedings of the First Annual Fossil Preparation and Collections Symposium: 6980.Google Scholar
Steyer, J.S., Laurin, M., Castanet, J. & De Ricqlès, A., 2004. First histological and skeletochronological data on temnospondyl growth: palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 206: 193201.Google Scholar
Suteethorn, V., Janvier, P. & Morales, M., 1988. Evidence for a plagiosauroid amphibian in the Upper Triassic Huai Hin Lat Formation of Thailand. Journal of Southeast Asian Earth Science 2: 185187.Google Scholar
Von Huene, F., 1922. Beiträge zur Kenntnis der Organisation einiger Stegocephalen der schwäbischen Trias. Acta Zoologica 3: 395459.Google Scholar
Warren, A.A., 1995. Plagiosternum granulosum E. Fraas: a plagiosaurid temnospondyl from the Middle Triassic of Crailsheim, Germany. Stuttgarter Beiträge zur Naturkunde B229: 18.Google Scholar
Witzmann, F., 2005. Hyobranchial and postcranial ontogeny of the temnospondyl Onchiodon labyrinthicus (Geinitz, 1861) from Niederhäslich (Döhlen Basin, Autunian, Saxony). Paläontologische Zeitschrift 79: 479492.Google Scholar
Witzmann, F., 2006. Cranial anatomy and ontogeny of the Permo-Carboniferous temnospondyl Archegosaurus decheni from the Saar-Nahe Basin, Germany. Transactions of the Royal Society of Edinburgh, Earth Sciences 96:131162.Google Scholar
Witzmann, F., 2009. Comparative histology of sculptured dermal bones in basal tetrapods, and the implications for the soft tissue dermis. Palaeodiversity 2: 233270.Google Scholar
Witzmann, F., 2011. Morphological and histological changes of dermal scales during the fish-to-tetrapod transition. Acta Zoologica (Stockholm) 92: 281302.Google Scholar
Witzmann, F. & Schoch, R.R., 2006. The postcranium of Archegosaurus decheni, and a phylogenetic analysis of temnospondyl postcrania. Palaeontology 49: 12111235.Google Scholar
Witzmann, F. & Soler-Gijón, R., 2010. The bone histology of osteoderms in temnospondyl amphibians and in the chroniosuchian, Bystrowiella . Acta Zoologica (Stockholm) 91: 96114.Google Scholar
Witzmann, F., Scholz, H. & Ruta, M., 2009.The skull ontogeny of temnospondyls: a geometric morphometrics approach. Alcheringa 33: 237255.Google Scholar