Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-10-31T02:27:49.219Z Has data issue: false hasContentIssue false

Arm autotomy and arm branching pattern as anti-predatory adaptations in stalked and stalkless crinoids

Published online by Cambridge University Press:  08 February 2016

Tatsuo Oji
Affiliation:
Geological Institute, University of Tokyo, Tokyo 113, Japan
Takashi Okamoto
Affiliation:
Department of Earth Sciences, Ehime University, Matsuyama 790, Japan

Abstract

Arm autotomy was induced in a living specimen of Metacrinus rotundus (Echinodermata: Crinoidea). An arm was autotomized at a ligamentary articulation known as a cryptosyzygy, following incision by scissors distal to the break point. Although sessile stalked crinoids cannot entirely escape from a predatory attack by arm autotomy and they do not have an active defense, arm autotomy at cryptosyzygies reduces damage and arm loss by effective distribution, and by minimizing trauma and facilitating subsequent regeneration.

The paradigmatic distribution of cryptosyzygies in which arm loss is set at a minimum, compared with the actual distribution, shows that these two patterns are similar and that actual specimens successfully reduce arm loss by the effective distribution of cryptosyzygies. The crinoid branching pattern also affects arm loss, and two different paradigms are discussed: anti-predatory and harvesting. Arm branching patterns of various isocrinids have tended toward the anti-predatory configuration from the Jurassic to the Recent, suggesting that the isocrinids have coped with increased predation. Shallow-water comatulids generally adopt the anti-predatory paradigm in their branching pattern, whereas many deep-water, stalked crinoids adopt a harvesting paradigm, reflecting that shallow-water comatulids receive more predatory attacks than do deep-water crinoids.

Type
Research Article
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Amemiya, S., and Oji, T. 1992. Regeneration in sea lilies. Nature 357:546547.CrossRefGoogle Scholar
Baumiller, T. K., LaBarbera, M., and Woodley, J. D. 1991. Ecology and functional morphology of the isocrinid Cenocrinus asterius (Linnaeus) (Echinodermata: Crinoidea): in situ and laboratory experiments and observations. Bulletin of Marine Science 48:731748.Google Scholar
Bourseau, J.-P., Améziane-Cominardi, N., Avocat, R., and Roux, M. 1991. Echinodermata: les crinoïdes pédonculés de Nouvell-Calédonie. Pp. 229333in Crosnier, A., ed. Résultats des Campagnes Musorstom, Vol. 8. Mémoir du Musée national d'Histoire naturelle (A) 151.Google Scholar
Breimer, A. 1978. General morphology, recent crinoids. Pp. T9T58in Moore, R. C. and Teichert, C., eds. Treatise on Invertebrate Paleontology, Part T. Echinodermata 2, Crinoidea (1). Geological Society of America and University of Kansas, Boulder, Colo.Google Scholar
Carpenter, P. H. 1884. Report on the Crinoidea collected during the voyage of H.M.S. Challenger, during the years 1873-1876. The stalked crinoids. Report on the scientific results on the voyage of H.M.S. Challenger during the years 1873-1876. Zoology 11:1442.Google Scholar
Cheetham, A., and Hayek, L. C. 1983. Geometric consequence of branching growth in adeoniform Bryozoa. Paleobiology 9:240260.CrossRefGoogle Scholar
Clark, W. B., and Twitchell, M. W. 1915. The Mesozoic and Cenozoic Echinodermata of the United States. U.S. Geological Survey Monograph 54:1341.Google Scholar
Cowen, R. 1981. Crinoid arms and banana plantations: an economic harvesting analogy. Paleobiology 7:332343.CrossRefGoogle Scholar
Emson, R. H., and Wilkie, I. C. 1980. Fission and autotomy in echinoderms. Oceanography and Marine Biology, Annual Review 18:155250.Google Scholar
Fortey, R. A., and Bell, A. 1987. Branching geometry and function of multiramous graptoloids. Paleobiology 13:119.CrossRefGoogle Scholar
Gislén, T. 1924. Echinoderm studies. Zoologiska Bidrag från Uppsala 9:1316.Google Scholar
Hess, H. 1972. Chariocrinus n. gen. für Isocrinus andreae Desor aus dem unteren Hauptrogenstein (Bajocien) des Basler Jura. Eclogae Geologicae Helveticae 65:197210.Google Scholar
Hess, H., and Holenweg, H. 1985. Die Begleitfauna auf den Seelilienbänken im mittleren Dogger des Schweizer Jura. Tätigkeitsberichte Naturforschende Gesellshaft Baselland 33:141177.Google Scholar
Holland, N. D., and Grimmer, J. C. 1981. Fine structure of syzygial articulation before and after autotomy in Florometra serratissima (Echinodermata: Crinoidea). Zoomorphology 98:169183.CrossRefGoogle Scholar
McKinney, F. K. 1981. Planar branch systems in colonial suspension feeders. Paleobiology 7:344354.CrossRefGoogle Scholar
Messing, C. G., RoseSmyth, M. C., Mailer, S. R., and Miller, J. E. 1988. Relocation movement in a stalked crinoid (Echinodermata). Bulletin of Marine Science 42:480487.Google Scholar
Meyer, D. L. 1985. Evolutionary implications of predation on Recent comatulid crinoids from the Great Barrier Reef. Paleobiology 11:154164.CrossRefGoogle Scholar
Meyer, D. L., and Ausich, W. I. 1983. Biotic interactions among Recent and among fossil crinoids. Pp. 377427in Tevesz, J. S. and McCall, P. L., eds. Biotic interactions in Recent and fossil benthic communities. Plenum, New York.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1977. Adaptive radiation of the comatulid crinoids. Paleobiology 3:7482.CrossRefGoogle Scholar
Meyer, D. L., and Macurda, D. B. Jr. 1980. Ecology and distribution of the shallow-water crinoids of Papua and Guam. Micronesica 16:5999.Google Scholar
Meyer, D. L., and Oji, T. 1993. Eocene crinoids from Seymour Island, Antarctic Peninsula: paleobiogeographic and paleoecologic implications. Journal of Paleontology 67:250257.CrossRefGoogle Scholar
Moore, R. C., and Vokes, H. E. 1953. Lower Tertiary crinoids from northwestern Oregon. Geological Survey Professional Paper 233-E:113147.Google Scholar
Niklas, K., and Kerchner, V. 1984. Mechanical and photosynthetic constraints on the evolution of plant shape. Paleobiology 10:79101.CrossRefGoogle Scholar
Oji, T. 1985. Early Cretaceous Isocrinus from Northeast Japan. Palaeontology 28:661674.Google Scholar
Oji, T. 1986. Skeletal variation related to arm regeneration in Metacrinus and Saracrinus, Recent stalked crinoids. Lethaia 19:355360.CrossRefGoogle Scholar
Oji, T. 1990. Miocene Isocrinidae (stalked crinoids) from Japan and their biogeographic implication. Transactions and Proceedings of the Palaeontological Society of Japan, new series 157:412429.Google Scholar
Rasmussen, H. W. 1961. A monograph on the Cretaceous Crinoidea. Biologiske Skrifter udgivet af Det Kongelige Danske Videnskabernes Selskab 19:183.Google Scholar
Rasmussen, H. W. 1978. Systematic description, Articulata. Pp. T813T928in Moore, R. C. and Teichert, C., eds. Treatise on invertebrate paleonology, Part T. Echinodermata 2, Crinoidea (3). Geological Society of America and University of Kansas, Boulder, Colo.Google Scholar
Rideout, J. A., Smith, N. B., and Sutherland, M. D. 1979. Chemical defense of crinoids by polyketide sulphates. Experientia 35:12731274.CrossRefGoogle ScholarPubMed
Roux, M. 1976. Aspects de la variabilité et de la croissance au sen d'une polulation de la Pentacrine actuelle: Annacrinus wyville thomsoni Jeffreys (Crinoidea). Thalassia Jugoslavica 12:307320.Google Scholar
Seilacher, A. 1979. Constructional morphology of sand dollars. Paleobiology 5:191221.CrossRefGoogle Scholar
Signor, P. W. III, and Brett, C. E. 1984. The mid-Paleozoic precursor to the Mesozoic marine revolution. Paleobiology 10:229245.CrossRefGoogle Scholar
Simms, M. J. 1988. The phylogeny of post-Palaeozoic crinoids. Pp. 269284in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar
Vermeij, G. 1983. The Mesozoic marine revolution: evidence from snails, predators and grazers. Paleobiology 3:245258.CrossRefGoogle Scholar
Wilkie, I. C., and Emson, R. H. 1988. Mutable collagenous tissues and their significance for echinoderm palaeontology and phylogeny. Pp. 311330in Paul, C. R. C. and Smith, A. B., eds. Echinoderm phylogeny and evolutionary biology. Clarendon, Oxford.Google Scholar