Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T03:14:38.814Z Has data issue: false hasContentIssue false

Astogeny and phylogeny: evolutionary heterochrony in Paleozoic bryozoans

Published online by Cambridge University Press:  08 April 2016

Robert L. Anstey*
Affiliation:
Department of Geological Sciences, Michigan State University, East Lansing, Michigan 48824-1115

Abstract

Astogenetic trajectories have constrained evolutionary changes in bryozoans. Rates and timing of astogenetic differentiation have been modified for characters defining the morphology of zooids, subcolonies, and colonies. This paper catalogs 46 examples of bryozoan heterochrony, representing all five skeletonized orders. Heterochrony is inferred to have been a pervasive phenomenon in the evolution of Paleozoic stenolaemates, illustrated by 40 examples, 19 of which produced paedomorphosis and 21 peramorphosis. As a consequence, a restricted range of morphologic states has reappeared repetitively as homeomorphies and evolutionary reversals. Large-scale patterns developed across both geologic time and geographic space reflect variation in heterochronic products irrespective of the developmental processes by which they were achieved. Available evidence indicates that smaller, paedomorphic, and more plastic species inhabited onshore, low-diversity areas. Nonheritable plasticity is inferred to be a correlate of early growth stages and paedomorphosis. Taller, generally peramorphic species with damped plasticity are found in higher diversity, offshore regions. Seven key innovations, which first appeared during the early diversification of bryozoan clades, are peramorphic, and recapitulation was a predominant pattern during their Ordovician radiation. Trends in later phylogeny, on the other hand, have favored paedomorphic derived morphologies, as illustrated by 19 of the 32 examples. Recurrent reverse recapitulation suggests that offshore ancestors frequently gave rise to onshore paedomorphs.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology. 5:296317.Google Scholar
Anstey, R. L. 1981. Zooid orientation structures and water flow patterns in Paleozoic bryozoan colonies. Lethaia. 14:287302.Google Scholar
Anstey, R. L. 1986. Bryozoan provinces and patterns of generic evolution and extinction in the Late Ordovician of North America. Lethaia. 19:3351.Google Scholar
Anstey, R. L. and Bartley, J. W. 1984. Quantitative stereology: an improved thin section biometry for bryozoans and other colonial organisms. J. Paleontol. 58:612625.Google Scholar
Anstey, R. L. and Pachut, J. F. 1980. Fourier packing ordinate: a univariate size-independent measurement of polygonal packing variation in Paleozoic bryozoans. Math. Geol. 12:139156.Google Scholar
Anstey, R. L., Pachut, J. F., and Prezbindowski, D. R. 1976. Morphogenetic gradients in Paleozoic bryozoan colonies. Paleobiology. 2:131146.Google Scholar
Anstey, R. L. and Perry, T. G. 1970. Biometric procedures in taxonomic studies of Paleozoic bryozoans. J. Paleontol. 44:383398.Google Scholar
Anstey, R. L. and Perry, T. G. 1973. Eden Shale bryozoans: a numerical study (Ordovician, Ohio Valley). Pub. Mus., Michigan State Univ., Paleontol. Ser. 1:180.Google Scholar
Bartley, J. W. and Anstey, R. L. 1983. Cyclic growth in Lower Paleozoic stenolaemate bryozoans. Geol. Soc. Amer. Abstr. Programs. 15:523.Google Scholar
Bartley, J. W., Anstey, R. L., and Brunner, C. M. 1982. Nested growth rhythms in Paleozoic bryozoans. Geol. Soc. Am. Abstr. Programs. 14:267.Google Scholar
Bassler, R. S. 1915. Bibliographic index of American Ordovician and Silurian fossils. U.S. Natl. Mus. Bull. 92:11521.Google Scholar
Blake, D. B. 1976. Functional morphology and taxonomy of branch dimorphism in the Paleozoic bryozoan genus Rhabdomeson. Lethaia. 9:169178.Google Scholar
Blake, D. B. 1980. Homeomorphy in Paleozoic bryozoans: a search for explanations. Paleobiology. 6:451465.Google Scholar
Boardman, R. S. 1954. Morphologic variation and mode of growth of Devonian trepostomatous bryozoa. Science. 120:322.Google Scholar
Boardman, R. S. 1960. Trepostomatous Bryozoa of the Hamilton Group of New York State. U.S. Geol. Surv. Prof. Pap. 340:187.Google Scholar
Boardman, R. S. 1971. Mode of growth and functional morphology of autozooids in some Recent and Paleozoic tubular Bryozoa. Smithsonian Contrib. Paleobiology. 8:151.Google Scholar
Boardman, R. S. 1983. General features of the class Stenolaemata. Pp. G49G137. In: Boardman, R. S. et al., eds. Treatise on Invertebrate Paleontology, Part G, Bryozoa Revised, Vol. 1. Geol. Soc. Am.; Boulder, Colorado, and the Univ. of Kansas; Lawrence.Google Scholar
Boardman, R. S. and Cheetham, A. H. 1969. Skeletal growth, intracolony variation, and evolution in Bryozoa: a review. J. Paleontol. 43:205243.Google Scholar
Boardman, R. S. and Cheetham, A. H. 1973. Degrees of colony dominance in stenolaemate and gymnolaemate Bryozoa. Pp. 121220. In: Boardman, R. S. et al., eds. Animal Colonies. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Boardman, R. S., Cheetham, A. H., and Cook, P. L. 1970. Intracolony variation and the genus concept in Bryozoa. N. Am. Paleontol. Conv. Proc., pp. 294320.Google Scholar
Boardman, R. S. and McKinney, F. K. 1976. Skeletal architecture and preserved organs of four-sided zooids in convergent genera of Paleozoic Trepostomata (Bryozoa). J. Paleontol. 50:2578.Google Scholar
Boardman, R. S. and Utgaard, J. 1966. A revision of the Ordovician bryozoan genera Monticulipora, Peronopora, Heterotrypa, and Dekayia. J. Paleontol. 40:10821108.Google Scholar
Brood, K. 1976. Wall structure and evolution in cyclostomate Bryozoa. Lethaia. 9:377389.Google Scholar
Brown, G. G. and Daly, E. J. 1981. Evolutionary trends in Parvohallopora Singh in the Dillsboro Formation (Upper Ordovician) of southeastern Indiana. Pp. 2938. In: Larwood, G. P. and Nielsen, C., eds. Recent and Fossil Bryozoa. Olsen & Olsen; Fredensborg, Denmark.Google Scholar
Cuffey, R. J. 1967. Bryozoan Tabulipora carbonaria in Wreford Megacyclothem (Lower Permian) of Kansas: Univ. Kansas Paleontol. Contr., Bryozoa, Art. 1, 96 pp.Google Scholar
Cumings, E. R. 1910. Paleontology and the recapitulation theory. Proc. Indiana Acad. Sci. 1909, pp. 305340.Google Scholar
Cumings, E. R. 1912. Development and systematic position of the monticuliporids. Bull. Geol. Soc. Am. 23:357370.Google Scholar
Cutler, J. F. 1968. Morphology, taxonomy, and evolution of the bryozoan Constellaria from the Cincinnati Arch. Ph.D. dissertation, Columbia Univ., 297 pp.Google Scholar
Dzik, J. 1975. The origin and early phylogeny of the cheilostomatous Bryozoa. Acta Palaeontol. Polonica. 20:395423.Google Scholar
Elias, M. K. 1964. Stratigraphy and paleoecology of some Carboniferous bryozoans. Cinquième Congrès Interntl. de Stratigraphie et de Geologie du Carbonifere. Compte Rend., pp. 375382.Google Scholar
Gould, S. J. 1977. Ontogeny and Phylogeny. 501 pp. Belknap Press of Harvard Univ. Press; Cambridge, Massachusetts.Google Scholar
Gould, S. J. 1980. Is a new and general theory of evolution emerging? Paleobiology. 6:119130.Google Scholar
Gould, S. J. and Vrba, E. S. 1982. Exaptation: a missing term in the science of form. Paleobiology. 8:415.Google Scholar
Harmer, S. F. 1923. On cellularine and other Polyzoa. J. Linn. Soc. 35:293361.Google Scholar
Hickey, D. R. 1984. Skeletal and chemical growth cycles and ultrastructure in the Late Ordovician bryozoan Peronopora vera. Geol. Soc. Am. Abstr. Prog. 16:146.Google Scholar
Jebram, D. 1973. The importance of different growth directions in the Phylactolaemata and Gymnolaemata for reconstructing the phylogeny of the Bryozoa. Pp. 565576. In: Larwood, G. P., ed. Living and Fossil Bryozoa. Academic Press; London.Google Scholar
Kodsi, M. G. 1967. Die fauna der bank s des Auernig (Oberkarbon; Karnische Alpen, Osterreich). I. Teil: Fenestella Lonsdale 1839. Sonderdrück aus Carinthia II, Mitteilungen des Naturwissenschaftlichen Vereines für Karnten 77, bzw. 157. Jahrgang, Klagenfurt, pp. 5981.Google Scholar
Lang, W. D. 1921. Catalogue of the fossil Bryozoa (Polyzoa) in the Department of Geology, British Museum (Natural History). The Cretaceous Bryozoa (Polyzoa). Vol. III. The Cribrimorphs—Part I. Longmans; London.Google Scholar
Larwood, G. P. and Taylor, P. D. 1979. Early structural and ecological diversification in the Bryozoa. Pp. 209234. In: House, M. R., ed. The Origin of Major Invertebrate Groups. Academic Press; London.Google Scholar
Levinson, G. M. R. 1909. Morphological and systematic studies on the cheilostomatous Bryozoa. 431 pp. Nationale Forfatteres Forlag; Copenhagen.Google Scholar
Marcus, E. 1933. Bryozoarios marinhos Brasileiros II. Univ. São Paulo, Fac. Filos. Cienc. Letr., Bol. 4, Zool. 2:1196.Google Scholar
Mckinney, F. K. 1977. Functional interpretation of lyre-shaped Bryozoa. Paleobiology. 3:9097.Google Scholar
Mckinney, F. K. and King, B. F. 1984. Early growth stages of some Paleozoic phylloporinid bryozoans. J. Paleontol. 58:852866.Google Scholar
Mundy, S. P., Taylor, P. D., and Thorpe, J. P. 1981. A reinterpretation of phylactolaemate phylogeny. Pp. 185190. In: Larwood, G. P. and Nielsen, C., eds. Recent and Fossil Bryozoa. Olsen and Olsen; Fredensborg, Denmark.Google Scholar
Pachut, J. F. 1982. Morphologic variation within and among genotypes in two Devonian bryozoan species: an independent indicator of paleostability? J. Paleontol. 56:703716.Google Scholar
Pachut, J. F.In press. Stereology and jackknifed variance partitioning: diversity-related variation in four species of Ordovician trepostome bryozoans. J. Paleontol.Google Scholar
Pachut, J. F. and Anstey, R. L. 1979. A developmental explanation of stability-diversity-variation hypotheses: morphogenetic regulation in Ordovician bryozoan colonies. Paleobiology. 5:168187.Google Scholar
Pachut, J. F. and Anstey, R. L. 1984. The relative information content of Fourier-structural, binary (presence-absence) and combined data sets: a test using the H. A. Nicholson Collection of Paleozoic stenolaemate bryozoans. J. Paleontol. 58:12961311.Google Scholar
Perry, T. G. and Hattin, D. B. 1958. Astogenetic study of fistuliporoid bryozoans. J. Paleontol. 32:10391050.Google Scholar
Podell, M. E. and Anstey, R. L. 1979. The interrelationship of early colony development, monticules and branches in Palaeozoic bryozoans. Palaeontology. 22:965982.Google Scholar
Powell, N. A. 1967. Polyzoa (Bryozoa)-Ascophora-from North New Zealand. Discovery Rep. 34:199394.Google Scholar
Prezbindowski, D. R. and Anstey, R. L. 1978. A Fourier-numerical study of a bryozoan fauna from the Threeforks Formation (Late Devonian) of Montana. J. Paleontol. 52:353369.Google Scholar
Rabbio, S. F. and Regalbuto, D. P. 1985. Tidal growth cycles in skeletal laminations of the Upper Paleozoic bryozoan Tabulipora. Geol. Soc. Am. Abstr. Progr. 17:322.Google Scholar
Rider, J. and Cowen, R. 1977. Adaptive architectural trends in encrusting ectoprocts. Lethaia. 10:2941.Google Scholar
Ross, J. P. 1967. Evolution of ectoproct genus Prasopora in Trentonian Time (Middle Ordovician) in northern and central United States. J. Paleontol. 41:403416.Google Scholar
Ryland, J. S. 1970. Bryozoans. 175 pp. Hutchinson Univ. Library; London.Google Scholar
Schopf, T. J. M. 1969. Paleoecology of ectoprocts (bryozoans). J. Paleontol. 43:234244.Google Scholar
Schopf, T. J. M. 1977. Patterns and themes of evolution among the Bryozoa. Pp. 159207. In: Hallam, A., ed. Patterns of Evolution. Elsevier; Amsterdam.Google Scholar
Schopf, T. J. M., Collier, K. O., and Bach, B. O. 1980. Relation of the morphology of stick-like bryozoans at Friday Harbor, Washington, to bottom currents, suspended matter and depth. Paleobiology. 6:466476.Google Scholar
Silen, L. 1942. Origin and development of the cheilostomatous stem of Bryozoa. Zool. Bidrag. Uppsala 22:159.Google Scholar
Smith-Gill, S. J. 1983. Developmental plasticity: developmental conversion versus phenotypic modulation. Am. Zool. 23:4755.Google Scholar
Starcher, R. W. 1982. Effects of simulated growth parameters on bryozoan colony form. M.S. thesis; Michigan State Univ., 133 pp.Google Scholar
Taylor, P. D. and Curry, G. B. 1985. The earliest known fenestrate bryozoan, with a short review of lower Ordovician Bryozoa. Palaeontology. 28:147158.Google Scholar
Taylor, P. D. and Furness, R. W. 1978. Astogenetic and environmental variation of zooid size within colonies of Jurassic Stomatopora (Bryozoa, Cyclostomata). J. Paleontol. 52:10931102.Google Scholar
Ulrich, E. O. 1895. On the Lower Silurian Bryozoa of Minnesota. Minnesota Geol. and Nat. Hist. Surv. 3, pt. 1:96332.Google Scholar
Urbanek, A. 1973. Organization and evolution of graptolite colonies. Pp. 441514. In: Boardman, R. S., Cheetham, A. H., and Oliver, W. A., eds. Animal Colonies. Dowden, Hutchinson & Ross; Stroudsburg, Pa.Google Scholar
Utgaard, J. 1981. Lunaferamita, a new genus of Constellariidae (Bryozoa) with strong cystoporate affinities. J. Paleontol. 55:10581070.Google Scholar
Voigt, E. 1939. Uber die dornenspezialisation bei cheilostomen Bryozoen und di nichtum kehrbarkeit der entwicklung. Palaontol. Z. 21:81107.Google Scholar
Voigt, E. 1959. Sur les differents stades de l'astogenese de certains Bryozoaires cheilostomes. Bull. Soc. Geol. Fr. 7e. Sér. 7:697704.Google Scholar
Waddington, C. H. 1974. A catastrophe theory of evolution. Pp. 253266. In: Waddington, C. H.The Evolution of an Evolutionist. Cornell Univ. Press; Ithaca, N.Y.Google Scholar
Zimmer, R. L. and Woollacott, R. M. 1977. Metamorphosis, ancestrulae, and coloniality in bryozoan life cycles. Pp. 91142. In: Woollacott, R. M. and Zimmer, R. L., eds. Biology of Bryozoans. Academic Press; New York.Google Scholar