Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-01T07:06:30.102Z Has data issue: false hasContentIssue false

Diversity patterns among early gastropods: contrasting taxonomic and phylogenetic descriptions

Published online by Cambridge University Press:  08 February 2016

Peter J. Wagner*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago Illinois 60637, pjw1@midway.uchicago.edu

Abstract

Paleobiologists have used taxonomic data for several types of diversity studies. Some systematists have charged that this practice obfuscates actual historical patterns of clades because many traditionally defined higher taxa are not monophyletic. Some have questioned whether ranked taxa ever represent comparable units, even when monophyletic. This study contrasts diversity patterns implied by phylogenetic estimates with those implied by ranked taxa. Early Paleozoic gastropods are useful as a test case because their generic taxonomy does not reflect the phylogenetic systematic philosophy, and fewer than one third of the genera represent monophyletic clades. Phylogenetic diversity is described in two ways: (1) numbers of lineages (i.e., observed plus phylogenetically implied “ghost lineages”), and (2) numbers of monophyla (i.e., clades whose sister taxa are other clades rather than species). “Monophyla” as tallied here are monophyletic relative to their contemporaries and older clades; however, they can be paraphyletic relative to “future” monophyla. Phylogenetic diversity is tallied with both maximum and minimum “ghost lineage” interpolations in order to reflect different possible speciation patterns and timings of speciation. Phylogenetic diversity as implied by a stricter cladistic criterion (i.e., taxa that are monophyletic relative to their contemporaries, older taxa and younger taxa) is discussed also.

First differences between substage-to-substage standing diversities reveal significant congruence between generic data and both types of phylogenetic data. Taxonomic and phylogenetic data imply a major extinction event at the end of the Ordovician, although the phylogenetic data suggest greater extinction levels than do the taxonomic data. Both data sets also suggest diversity-dependent diversification reminiscent of logistic growth, which is the pattern predicted if one or a few major ecologic factors were constraining the diversification of gastropods. However, diversity described by strict Hennigian taxa is not highly congruent with diversity as described by either lineages or monophyla. Comparing subclade dynamics requires extensive redefinition of traditional orders, but lineages, monophyla and genera all suggest that the two major subclades had different logistic diversification patterns, with one (“murchisonioids”) having a higher K than the other (“euomphaloids”). The concern that phylogenetic and taxonomic data might imply very different evolutionary histories is not borne out by gastropods, despite the nonphylogenetic nature of their traditional taxonomy.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Allmon, W. D., Erwin, D. H., Linsley, R. M., and Morris, P. J. 1992. Trophic level and evolution in Paleozoic gastropods. Pp. 3in Lidgard, S. and Crane, P. R., eds. North American Paleontological Convention V. The Paleontological Society, Knoxville, Tenn.Google Scholar
Alroy, J. 1994. Four permutation tests for the presence of phylogenetic structure. Systematic Biology 43:430437.CrossRefGoogle Scholar
Alroy, J. 1995. Continuous track analysis: a new phylogenetic and biogeographic method. Systematic Biology 44:153172.CrossRefGoogle Scholar
Ax, P. 1987. The phylogenetic system: the systematization of organisms on the basis of their phylogenesis. John Wiley, Chichester.Google Scholar
Barrande, J. 1903-1911. Systéme Silurien du centre de la Bohême, Vol. 4. Gastéropodes, tome 1. Prague.Google Scholar
Cox, L. R., Newell, N. D., Branson, C. C., Casey, R., Chavan, A., Coogan, A. H., Deschaseaux, C., Fleming, C. A., Haas, F., Hertlein, L. G., Keen, A. M., LaRocque, A., McAlester, A. L., Perkins, B. F., Puri, H. S., Smith, L. A., Soot-Ryen, T., Stenzel, H. B., Turner, R. D., and Weir, J. 1969. Systematic descriptions. Pp. N225N489in Moore, R. C., ed. Treatise on invertebrate paleontology. Part N. Mollusca 6. University of Kansas Press, Lawrence.Google Scholar
Cracraft, J. 1981. Pattern and process in paleobiology: the role of cladistics in systematic paleontology. Paleobiology 7:456468.CrossRefGoogle Scholar
de Queiroz, K. 1992. Phylogenetic definitions and taxonomic philosophy. Biology and Philosophy 7:295313.CrossRefGoogle Scholar
de Queiroz, K., and Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39:307322.CrossRefGoogle Scholar
de Queiroz, K., and Gauthier, J. 1992. Phylogenetic taxonomy. Annual Review of Ecology and Systematics 23:449480.CrossRefGoogle Scholar
de Queiroz, K., and Gauthier, J. 1994. Toward a phylogenetic system of biological nomenclature. Trends in Ecology and Evolution 9:2731.CrossRefGoogle Scholar
Doyle, J. A., and Donoghue, M. J. 1993. Phylogenies and angiosperm diversification. Paleobiology 19:141167.CrossRefGoogle Scholar
Edgecombe, G. D. 1992. Trilobite phylogeny and the Cambrian-Ordovician “event”: a cladistic reappraisal. Pp. 144177in Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Engelmann, G. F., and Wiley, E. O. 1977. The place of ancestor-descendant relationships in phylogeny reconstruction. Systematic Zoology 26:111.CrossRefGoogle Scholar
Erwin, D. H. 1990. Carboniferous-Triassic gastropod diversity patterns and the Permo-Triassic mass extinction. Paleobiology 16:187203.CrossRefGoogle Scholar
Erwin, D. H., and Signor, P. W. 1992. Extinction in an extinction-resistant clade: the evolutionary history of the Gastropoda. Pp. 152160in Dudley, E. C., ed. The unity of evolutionary biology, vol. I. Fourth International Congress of Systematic and Evolutionary Biology. Dioscorides.Google Scholar
Estabrook, G. F. 1986. Evolutionary classification using convex phenetics. Systematic Zoology 35:560570.CrossRefGoogle Scholar
Fisher, D. C. 1991. Phylogenetic analysis and its implication in evolutionary paleobiology. Pp. 103122in Gilinsky, N. L., and Signor, P. W., eds. Analytical paleobiology. The Paleontological Society, Knoxville, Tenn.Google Scholar
Fisher, D. C. 1994. Stratocladistics: morphological and temporal patterns and their relation to phylogenetic process. Pp. 133171in Grande, L. and Rieppel, O., eds. Interpreting the hierarchy of nature—from systematic patterns to evolutionary theories. Academic Press, Orlando, Fla.Google Scholar
Foote, M. 1994a. Morphological disparity in Ordovician-Devonian crinoids and the early saturation of morphological space. Paleobiology 20:320344.CrossRefGoogle Scholar
Foote, M. 1994b. Temporal variation in extinction risk and temporal scaling of extinction metrics. Paleobiology 20:424444.CrossRefGoogle Scholar
Gauthier, J. A. 1994. The diversification of the amniotes. Pp. 129159in Prothero, D. R. and Schoch, R., eds. Major features of vertebrate evolution. The Paleontological Society, Knoxville, Tenn.Google Scholar
Gould, S. J., and Calloway, C. B. 1980. Clams and brachiopods—ships that pass in the night. Paleobiology 6:383396.CrossRefGoogle Scholar
Haszprunar, G. 1988. On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies 54:367441.CrossRefGoogle Scholar
Hennig, W. 1966. Phylogenetic systematics. University of Illinois Press, Urbana.Google Scholar
Hennig, W. 1981. Insect phylogeny. John Wiley, New York.Google Scholar
Hubbard, A. E., and Gilinsky, N. L. 1992. Mass extinctions as statistical phenomena: an examination of the evidence using X2 tests and bootstrapping. Paleobiology 18:148160.CrossRefGoogle Scholar
Huelsenbeck, J. P. 1991. Tree-length distribution skewness: an indicator of phylogenetic information. Systematic Zoology 40:257270.CrossRefGoogle Scholar
Janis, C. 1992. The importance of paraphyletic groups in mammalian paleobiology. Pp. 148in Lidgard, S. and Crane, P. R., eds. Fifth North American Paleontology Convention—Abstracts and Program. The Paleontological Society, Knoxville, Tenn.Google Scholar
Kim, J., Rohlf, F. J., and Sokal, R. R. 1993. The accuracy of phylogenetic estimation using the neighbor-joining method. Evolution 47:471486.Google ScholarPubMed
Kitchell, J. A., and Carr, T. R. 1985. Nonequilibrium model of diversification: faunal turnover dynamics. Pp. 277309in Valentine, J. W., ed. Phanerozoic diversity patterns—profiles in macroevolution. Princeton University Press, Princeton.Google Scholar
Knight, J. B., Cox, L. R., Batten, R., and Yochelson, E. 1960. Systematic descriptions. Pp. 169324in Moore, R. C., ed. Treatise on invertebrate paleontology. Part I. Mollusca 1. University of Kansas Press, Lawrence.Google Scholar
Koch, C. F. 1987. Prediction of sample size effects on the measured temporal and geographic distribution patterns of species. Paleobiology 13:100107.CrossRefGoogle Scholar
Levinton, J. S. 1974. Trophic group and evolution of bivalve molluscs. Palaeontology 23:579585.Google Scholar
Lidgard, S., and Crane, P. R., eds. 1992. North American Paleontological Convention V. The Paleontological Society, Knoxville, Tenn.Google Scholar
Linsley, R. M. 1977. Some laws of gastropod shell form. Paleobiology 3:196206.CrossRefGoogle Scholar
Linsley, R. M. 1978. Locomotion rates and shell form in the Gastropoda. Malacologia 17:193206.Google Scholar
Linsley, R. M., and Kier, W. M. 1984. The Paragastropoda: a proposal for a new class of Paleozoic Mollusca. Malacologia 25:241254.Google Scholar
Linsley, R. M., and Yochelson, E. L. 1973. Devonian carrier shells (Euomphalidae) from North America and Germany. Geological Survey Professional Paper 824:123.Google Scholar
Linsley, R. M., Yochelson, E. L., and Rohr, D. M. 1978. A reinterpretation of the mode of life of some Paleozoic frilled gastropods. Lethaia 11:105112.CrossRefGoogle Scholar
Marshall, C. R. 1990. Confidence intervals on stratigraphic ranges. Paleobiology 16:110.CrossRefGoogle Scholar
Marshall, C. R. 1994. Using the ammonite fossil record to predict the position of the K/T boundary Ir anomaly on Seymour Island, Antarctica. Geological Society of America Abstracts with Program 26:A-394.Google Scholar
Marshall, C. R. 1995. Stratigraphy, the true order of species' originations and extinctions, and testing ancestor-descendant hypotheses among Caribbean bryozoans. Pp. 208236in Erwin, D. H. and Anstey, R. L., eds. New approaches for studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Maurer, B. A. 1989. Diversity-dependent species dynamics: incorporating the effects of population-level processes on species dynamics. Paleobiology 15:133146.CrossRefGoogle Scholar
McKinney, M. L. 1990. Classifying and analyzing evolutionary trends. Pp. 2858in McNamara, K. J., ed. Evolutionary trends. University of Arizona Press, Tucson.Google Scholar
McKinney, M. L., and Oyen, C. W. 1989. Causation and nonrandomness in biological and geological time series: temperature as proximal control of extinction and diversity. Palaios 4:315.CrossRefGoogle Scholar
McNair, C. G., Kier, W. M., LaCroix, P. D., and Linsley, R. M. 1981. The functional significance of aperture form in gastropods. Lethaia 14:6370.CrossRefGoogle Scholar
Miller, A. I., and Sepkoski, J. J. Jr. 1988. Modeling bivalve diversification: the effect of interaction on a macroevolutionary system. Paleobiology 14:364369.CrossRefGoogle ScholarPubMed
Morris, N. J., and Cleevely, R. J. 1981. Phanerotinus cristatus (Phillips) and the nature of euomphalacean Gastropods, Molluscans. Bulletin of the British Museum of Natural History (Geology) 35:195212.Google Scholar
Morris, P. J. 1991. Functional morphology and phylogeny: an assessment of monophyly in the Kingdom Animalia and Paleozoic nearly planispiral snail-like mollusks. Unpublished Ph.D. dissertation. Harvard University.Google Scholar
Nei, M. 1991. Relative efficiencies of different tree-making methods for molecular data. Pp. 90128in Miyamoto, M. M. and Cracraft, J. L., eds. Recent advances in phylogenetic studies of DNA sequences. Oxford University Press.CrossRefGoogle Scholar
Norell, M. A. 1992. Taxic origin and temporal diversity: the effect of phylogeny. Pp. 89118in Novacek, M. J. and Wheeler, Q. D., eds. Extinction and phylogeny. Columbia University Press, New York.Google Scholar
Norell, M. A. 1993. Tree-based approaches to understanding history: comments on ranks, rules, and the quality of the fossil record. American Journal of Science 293-A:407417.CrossRefGoogle Scholar
Norell, M. A., and Novacek, M. J. 1992a. Congruence between superpositional and phylogenetic patterns: comparing cladistic patterns with fossil records. Cladistics 8:319337.CrossRefGoogle ScholarPubMed
Norell, M. A., and Novacek, M. J. 1992b. The fossil record and evolution: comparing cladistic and paleontologic evidence for vertebrate history. Science 255:16901693.CrossRefGoogle ScholarPubMed
Novacek, M. J., and Norell, M. A. 1982. Fossils, phylogeny, and taxonomic rates of evolution. Systematic Zoology 31:266275.CrossRefGoogle Scholar
Patterson, C., and Smith, A. B. 1987. Is the periodicity of extinctions a taxonomic artefact? Nature (London) 330:248251.CrossRefGoogle Scholar
Patterson, C., and Smith, A. B. 1989. Periodicity in extinction: the role of systematics. Ecology 70:802811.CrossRefGoogle Scholar
Paul, C. R. C. 1982. The adequacy of the fossil record. Pp. 75117in Joysey, K. A. and Friday, A. E., eds. Problems of phylogenetic reconstruction. Academic Press, London.Google Scholar
Paul, C. R. C. 1992. The recognition of ancestors. Historical Biology 6:239250.CrossRefGoogle Scholar
Peel, J. S. 1991. The Classes Tergomya and Helcionelloida, and early molluscan evolution. Grønlands Geologiske Undersøgelse Bulletin 161:1165.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.CrossRefGoogle Scholar
Raup, D. M. 1979. Biases in the fossil record of species and genera. Bulletin of the Carnegie Museum of Natural History 13:8591.Google Scholar
Raup, D. M. 1992. Large-body impact and extinction in the Phanerozoic. Paleobiology 18:8088.CrossRefGoogle ScholarPubMed
Raup, D. M., and Boyajian, G. E. 1988. Patterns of generic extinction in the fossil record. Paleobiology 14:109125.CrossRefGoogle ScholarPubMed
Raup, D. M., and Marshall, L. G. 1980. Variation between groups in evolutionary rates: a statistical test of significance. Paleobiology 6:923.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1984. Periodicity of extinctions in the geologic past. Proceedings of the National Academy of Sciences (USA) 81:801805.CrossRefGoogle ScholarPubMed
Rensch, B. 1960. Evolution above the species level. Columbia University Press, New York.Google Scholar
Rice, J. A. 1988. Mathematical statistics and data analysis. Wadsworth & Brooks, Pacific Groove, Calif.Google Scholar
Rohlf, F. J., Chang, W. S., Sokal, R. R., and Kim, J. 1990. Accuracy of estimated phylogenies: effects of tree topology and evolutionary model. Evolution 44:16711684.CrossRefGoogle ScholarPubMed
Rohr, D. M. 1994. Ordovician (Whiterockian) gastropods of Nevada: Bellerophontoidea, Macluritoidea, and Euomphaloidea. Journal of Paleontology 68:473486.CrossRefGoogle Scholar
Roy, J. M., McMenamin, M. A. S., and Alderman, S. E. 1990. Trophic differences, originations and extinctions during the Cenomanian and Maastrichtian stages of the Cretaceous. Pp. 299303in Kauffman, E. G. and Walliser, O. H., eds. Extinction events in Earth history. Springer, Berlin.CrossRefGoogle Scholar
Runnegar, B. 1981. Muscle scars, shell form and torsion in Cambrian and Ordovician univalved molluscs. Lethaia 14:311322.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1978. A kinetic model of Phanerozoic taxonomic diversity. I. Analysis of marine orders. Paleobiology 4:223251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1979. A kinetic model of Phanerozoic taxonomic diversity. II. Early Phanerozoic families and multiple equilibria. Paleobiology 5:222251.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277295in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1987. Reply to C. Patterson and A. B. Smith “Is the periodicity of extinctions a taxonomic artefact?”. Nature (London) 330:252.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1992. A compendium of fossil marine animal families, 2d ed.Milwaukee Public Museum, Wise.Google ScholarPubMed
Sepkoski, J. J. Jr., and Kendrick, D. C. 1993. Numerical experiments with model monophyletic and paraphyletic taxa. Paleobiology 19:168184.CrossRefGoogle ScholarPubMed
Slowinski, J. B., and Guyer, C. 1989. Testing the stochasticity of patterns of organismal diversity: an improved null model. The American Naturalist 134:907921.CrossRefGoogle Scholar
Smith, A. B. 1988. Patterns of diversification and extinction in early Palaeozoic echinoderms. Palaeontology 31:799828.Google Scholar
Smith, A. B. 1994. Systematics and the fossil record—documenting evolutionary patterns. Blackwell Scientific Publications, Oxford.CrossRefGoogle Scholar
Smith, A. B., and Patterson, C. 1988. The influence of taxonomic method on the perception of patterns of evolution. Evolutionary Biology 23:127216.CrossRefGoogle Scholar
Sokal, R. R., and Rohlf, F. J. 1981. Biometry. 2d ed.Freeman and Co., New York.Google Scholar
Strauss, D., and Sadler, P. M. 1989. Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology 21:411427.CrossRefGoogle Scholar
Swofford, D. L. 1989. PAUP: Phylogenetic Analysis Using Parsimony, Version 3.0. Computer program distributed by program distributed by the Illinois Natural History Survey, Champaign, Ill.Google Scholar
Valentine, J. W. 1989. How good was the fossil record? Clues from the California Pleistocene. Paleobiology 15:8394.CrossRefGoogle Scholar
Van Valen, L. 1978. Why not to be a cladist? Evolutionary Theory 3:285299.Google Scholar
Wagner, P. J. 1992. Phylogenetics of the early Paleozoic Archaeogastropoda. Pp. 300in Lidgard, S. and Crane, P. R., eds. Fifth North American Paleontological Convention. The Paleontological Society, Lawrence, Kans.Google Scholar
Wagner, P. J. 1995a. Stratigraphic tests of cladistic hypotheses. Paleobiology 21:153178.CrossRefGoogle Scholar
Wagner, P. J. 1995b. The generation and maintenance of morphologic and phylogenetic diversity among early gastropods. Unpublished Ph.D. dissertation. University of Chicago.Google Scholar
Wagner, P. J. 1995c. Testing evolutionary constraint hypotheses for early gastropods. Paleobiology 21:248272.CrossRefGoogle Scholar
Wagner, P. J., and Erwin, D. H. 1995. Phylogenetic tests of speciation hypotheses. Pp. 87122in Erwin, D. H. and Anstey, R. L., eds. New approaches to studying speciation in the fossil record. Columbia University Press, New York.Google Scholar
Wiley, E. O. 1979. An annotated Linnaean hierarchy, with comments on natural taxa and competing systems. Systematic Zoology 28:308337.CrossRefGoogle Scholar