Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-22T18:15:25.145Z Has data issue: false hasContentIssue false

Ecomorphological determinations in the absence of living analogues: the predatory behavior of the marsupial lion (Thylacoleo carnifex) as revealed by elbow joint morphology

Published online by Cambridge University Press:  06 May 2016

Borja Figueirido
Affiliation:
Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 20971 Málaga, Spain. E-mail: Borja.figueirido@uma.es, Almarse@uma.es
Alberto Martín-Serra
Affiliation:
Departamento de Ecología y Geología, Facultad de Ciencias, Universidad de Málaga, Campus de Teatinos s/n, 20971 Málaga, Spain. E-mail: Borja.figueirido@uma.es, Almarse@uma.es
Christine M. Janis
Affiliation:
Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02012, U.S.A. E-mail: Christine_janis@brown.edu.

Abstract

Thylacoleo carnifex, or the “pouched lion” (Mammalia: Marsupialia: Diprotodontia: Thylacoleonidae), was a carnivorous marsupial that inhabited Australia during the Pleistocene. Although all present-day researchers agree that Thylacoleo had a hypercarnivorous diet, the way in which it killed its prey remains uncertain. Here we use geometric morphometrics to capture the shape of the elbow joint (i.e., the anterior articular surface of the distal humerus) in a wide sample of extant mammals of known behavior to determine how elbow anatomy reflects forearm use. We then employ this information to investigate the predatory behavior of Thylacoleo. A principal components analysis indicates that Thylacoleo is the only carnivorous mammal to cluster with extant taxa that have an extreme degree of forearm maneuverability, such as primates and arboreal xenarthrans (pilosans). A canonical variates analysis confirms that Thylacoleo had forearm maneuverability intermediate between wombats (terrestrial) and arboreal mammals and a much greater degree of maneuverability than any living carnivoran placental. A linear discriminant analysis computed to separate the elbow morphology of arboreal mammals from terrestrial ones shows that Thylacoleo was primarily terrestrial but with some climbing abilities. We infer from our results that Thylacoleo used its forelimbs for grasping or manipulating prey to a much higher degree than its supposed extant placental counterpart, the African lion (Panthera leo). The use of the large and retractable claw on the semiopposable thumb of Thylacoleo for potentially slashing and disemboweling prey is discussed in the light of this new information.

Type
Articles
Copyright
Copyright © 2016 The Paleontological Society. All rights reserved 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. McN. 1985. Mechanics of posture and gait of some large dinosaurs. Zoological Journal of the Linnean Society 83:125.CrossRefGoogle Scholar
Almécija, S., Tallman, M., Alba, D. M., Pina, M., Moyà-Solà, S., and Jungers, W. L.. 2013. The femur of Orrorin tugenensis exhibits morphometric affinities with both Miocene apes and later hominins. Nature Communications 4:2888.Google Scholar
Anderson, C. 1929. Macropus titan Owen and Thylacoleo carnifex Owen. Records of the Australian Museum 17:3549.Google Scholar
Andersson, K. 2004. Elbow-joint morphology as a guide to forearm function and foraging behaviour in mammalian carnivores. Zoological Journal of the Linnean Society 142:91104.CrossRefGoogle Scholar
Andersson, K. 2005. Were there pack-hunting canids in the Tertiary, and how can we know? Paleobiology 31:5672.Google Scholar
Andersson, K., and Werdelin, L.. 2003. The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. Proceedings of the Royal Society of London B 270:S163S165.Google Scholar
Argot, C. 2001. Functional-adaptive anatomy of the forelimb in the Didelphidae, and the paleobiology of the Paleocene marsupials Mayulestes ferox and Pucadelphys andinus. Journal of Morphology 247:5179.3.0.CO;2-#>CrossRefGoogle ScholarPubMed
Arnold, C., Matthews, L. J., and Nunn, C. L.. 2010. The 10kTrees website: a new online resource for primate phylogeny. Evolutionary Anthropology 19:114118.Google Scholar
Astúa, D. 2009. Evolution of scapula size and shape in didelphid marsupials (Didelphimorphia: Didelphidae). Evolution 63:24382456.CrossRefGoogle ScholarPubMed
Biknevicius, A. R., and Van Valkenburgh, B.. 1996. Design for killing: craniodental adaptations of predators. Pp. 393428 in J. L. Gittleman, ed. Carnivore behavior, ecology and evolution, Vol. 2. Cornell University Press, Ithaca, N.Y.Google Scholar
Bininda-Emonds, O. R., Cardillo, M., Jones, K. E., MacPhee, R. D., Beck, R. M., Grenyer, R., Price, S. A., Vos, R. A., Gittleman, J. L., and Purvis, A, A.. 2007. The delayed rise of present-day mammals. Nature 446:507512.CrossRefGoogle ScholarPubMed
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Case, J. A. 1985. Differences in prey utilisation by Pleistocene marsupial carnivores, Thylacoleo carnifex (Thylacoleonidae) and Thylacinus cynocephalus (Thylacinidae). Australian Mammalogy 8:4552.CrossRefGoogle Scholar
Cerling, T. E., and Harris, J. M.. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.Google Scholar
Coombs, M. C. 1983. Large mammalian clawed herbivores: a comparative study. Transactions of the American Philosophical Society 73:196.Google Scholar
Cope, E. D. 1882. The ancestry and habits of Thylacoleo. American Naturalist 26:520521.Google Scholar
Cox, M., and Jefferson, G. T.. 1988. The first individual skeleton from Rancho La Brea. Current Research in the Pleistocene 5:6667.Google Scholar
De Vis, C. W. 1883. On tooth-marked bones of extinct marsupials. Proceedings of the Linnaean Society of New South Wales 8:187190.Google Scholar
Drake, A. G., and Klingenberg, C. P.. 2008. The pace of morphological change: historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society of London B 275:7176.Google Scholar
Dryden, I. L, and Mardia, K.. 1998. Statistical analysis of shape. Wiley, Chichester, U.K..Google Scholar
Emerson, S. B., and Radinsky, L.. 1980. Functional analysis of sabertooth cranial morphology. Paleobiology 6:524536.Google Scholar
Erickson, C. J. 1991. Percussive foraging in the aye-aye, Daubentonia madagascariensis. Animal Behaviour 41:793801.Google Scholar
Ewer, R. F. 1973. The carnivores. Cornell University Press, Ithaca, N.Y.Google Scholar
Fabre, A-C., Cornette, R., Slater, G., Argot, C., Peigné, S., Goswami, A., and Pouydebat, E.. 2013. Getting a grip on the evolution of grasping in musteloid carnivorans: a three-dimensional analysis of forelimb shape. Journal of Evolutionary Biology 26:15211535.Google Scholar
Felsenstein, J. J. 1985. Phylogenies and the comparative method. American Naturalist 125:115.Google Scholar
Figueirido, B., and Janis, C. M.. 2011. The predatory behaviour of the thylacine: Tasmanian tiger or marsupial wolf? Biology Letters 7:937940.Google Scholar
Figueirido, B., Serrano-Alarcón, F. J., Slater, G. J., and Palmqvist, P.. 2010. Shape at the cross-roads: homoplasy and history in the evolution of the carnivoran skull towards herbivory. Journal of Evolutionary Biology 23:25792594.Google Scholar
Figueirido, B., Tseng, Z. J., and Martín-Serra, A.. 2013. Skull shape evolution in durophagous carnivorans. Evolution 67:19751993.Google Scholar
Figueirido, B., Martín-Serra, A., Tseng, Z. J., and Janis, C. M.. 2015. Habitat changes and changing predatory habits in North American fossil canids. Nature Communications 6:7976.Google Scholar
Finarelli, J. A., and Flynn, J. J.. 2006. Ancestral state reconstruction of body size in the Caniformia (Carnivora, Mammalia): the effects of incorporating data from the fossil record. Systematic Biology 55:301313.Google Scholar
Finch, M. E. 1982. The discovery and interpretation of Thylacoleo carnifex (Thylacoleonidae: Marsupialia). Pp. 537551 in M. Archer, and G. Clayton, eds. Carnivorous marsupials. Royal Zoological Society of New South Wales, Sydney.Google Scholar
Finch, M. E., and Freedman, L.. 1988. Functional morphology of the limbs of Thylacoleo carnifex Owen (Thylacoleonidae: Marsupialia). Australian Journal of Zoology 36:251272.Google Scholar
Flower, W. H. 1868. On the Affinities and probable habits of the extinct Australian marsupial, Thylacoleo carnifex, Owen. Quarterly Journal of the Geological Society of London XXIV:307.Google Scholar
Ford, L. S., and Hoffmann, R. S.. 1988. Potos flavus. Mammalian Species 321:19.Google Scholar
Fortelius, M., and Solounias, N.. 2000. Functional characterization of ungulate molars using the abrasion-attrition wear gradient: a new method for reconstructing paleodiets. American Museum Novitates 3301:136.Google Scholar
Garland, T., Midford, P. E., and Ives, A. R.. 1999. An introduction to phylogenetically based statistical methods, with a new method for confidence intervals on ancestral values. American Zoologist 39:374388.Google Scholar
Gebo, D. L., and Rose, K. D.. 1993. Skeletal morphology and locomotor adaptation in Prolimnocyon atavus, an early Eocene hyaenodontid creodont. Journal of Vertebrate Paleontology 13:125144.Google Scholar
Geiger, M., Forasiepi, A. M., Koyabu, D., and Sánchez-Villagra, M. R.. 2014 . Heterochrony and post-natal growth in mammals—an examination of growth plates in limbs. Journal of Evolutionary Biology 27:98115.CrossRefGoogle ScholarPubMed
Gidaszewski, N. A., Baylac, M., and Klingenberg, C. P.. 2009. Evolution of sexual dimorphism of wing shape in the Drosophila melanogaster subgroup. BMC Evolutionary Biology 9:110.Google Scholar
Gill, E. D. 1954. Ecology and distribution of the extinct giant marsupial Thylacoleo. Victorian Naturalist 71:1835.Google Scholar
Gill, P.G., Purnell, M. A., Crumpton, N., Brown, K. R., Gostling, N. J., Stampanoni, M., and Rayfield, E. J.. 2014. Dietary specializations and diversity in feeding ecology of the earliest stem mammals. Nature 512:303305.Google Scholar
Gompper, M. E., and Decker, D. M.. 1998. Nasua nasua. Mammalian Species 580:19.CrossRefGoogle Scholar
Grand, T. I., and Barboza, P. S.. 2001. Anatomy and development of the koala, Phascolarctos cinereus: an evolutionary perspective on the superfamily Vombatoidea. Anatomy and Embryology 203:211223.Google Scholar
Gregory, W. K. 1951. Evolution emerging. Academic Medicine 26:244.Google Scholar
Gröcke, D. R. 1997. Stable-isotope studies on the collagenic and hydroxylapatite components of fossils: palaeoecological implications. Lethaia 30:6578.Google Scholar
Groves, C. P. 1971. Pongo pygmaeus. Mammalian Species 4:16.Google Scholar
Harmon, L. J., Weir, J. T., Brock, C. D., Glor, R. E., and Challenger, W.. 2008. GEIGER: investigating evolutionary radiations. Bioinformatics 24:129131.Google Scholar
Hayssen, V. 2010. Bradypus variegatus (Pilosa: Bradypodidae). Mammalian Species 42:1932.Google Scholar
Horton, D. R., and Wright, R. V. S.. 1981. Cuts on Lancefield bones: carnivorous Thylacoleo, not humans the cause. Archaeology and Physical Anthropology in Oceania 6:7380.Google Scholar
Iwaniuk, A. N., Pellis, S. M., and Whishaw, I. Q.. 2000. The relative importance of body size, phylogeny, locomotion, and diet in the evolution of forelimb dexterity in fissiped carnivores (Carnivora). Canadian Journal of Zoology 78:11101125.Google Scholar
Janis, C. M. 1979. Mastication in the hyrax and its relevance to ungulate dental evolution. Paleobiology 5:5059.Google Scholar
Janis, C. M., and Figueirido, B.. 2014. Forelimb anatomy and the discrimination of the predatory behavior of carnivorous mammals: the thylacine as a case study. Journal of Morphology 275:13211338.CrossRefGoogle ScholarPubMed
Janis, C. M., Buttrill, K., and Figueirido, B.. 2014. Locomotion in extinct giant kangaroos: were sthenurines hop-less monsters? PLoS ONE 9:e109888.Google Scholar
Jenkins, F. A. 1973. The functional anatomy and evolution of the mammalian humero-ulnar articulation. American Journal of Anatomy 137:281297.Google Scholar
Johnson, C. N. 2014. The rise and fall of large marsupial carnivores. Pp. 1326 in A. Glen, D., and Dickman, eds. Carnivores of Australia, past, present and future. CSIRO, Collingwood, Australia.Google Scholar
Johnson, C. N., and Johnson, K. A.. 1983. Behaviour of the bilby, Macrotis lagotis (Reid) (Marsupialia: Thylacomyidae) in captivity. Wildlife Research 10:7787.CrossRefGoogle Scholar
Jones, C., Jones, C. A., Jones, J. K., and Wilson, D. E.. 1996. Pan troglodytes. Mammalian Species 529:19.Google Scholar
Jones, M. E. 2003. Convergence in ecomorphology and guild structure among marsupial and placental carnivores. Pp. 285296 in M. Jones, C. Dickman, and M. Archer, eds. Predators with pouches: the biology of carnivorous marsupials. CSIRO, Collingwood, Australia.Google Scholar
Jones, M. E., and Stoddart, D. M.. 1998. Reconstruction of the predatory behaviour of the extinct marsupial thylacine (Thylacinus cynocephalus). Journal of Zoology 246:239246.CrossRefGoogle Scholar
Jones, M. E., Rose, R. K., and Burnett, S.. 2001. Dasyurus maculatus. Mammalian Species 676:19.Google Scholar
Kelly, E. M., and Sears, K. E.. 2011. Reduced phenotypic covariation in marsupial limbs and the implications for mammalian evolution. Biological Journal of the Linnaean Society of London 102:2236.Google Scholar
Klingenberg, C. P. 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11:353357.Google Scholar
Klingenberg, C. P., and Ekau, W.. 1996. A combined morphometric and phylogenetic analysis of an ecomorphological trend: pelagization in Antarctic fishes (Perciformes: Nototheniidae). Biological Journal of the Linnaean Society of London 59:143177.Google Scholar
Klingenberg, C. P., and Gidaszewski, N. A.. 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology 59:245261.Google Scholar
Klingenberg, C. P., and Marugán-Lobón, J.. 2013. Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Systematic Biology 62:591610.Google Scholar
Klingenberg, C. P., Dutke, S., Whelan, S., and Kim, M.. 2012. Developmental plasticity, morphological variation and evolvability: a multilevel analysis of morphometric integration in the shape of compound leaves. Journal of Evolutionary Biology 25:115129.Google Scholar
Krefft, G. 1866. On the dentition of Thylacoleo carnifex, Owen. Annals and Magazine of Natural History, series 3, 18:148.Google Scholar
Laurin, M. 2004. The evolution of body size, Cope’s rule and the origin of amniotes. Systematic Biology 53:594622.Google Scholar
Lindenmayer, D. B., Cunningham, R. B., Pope, M. L., and Donnelly, C. F.. 1999. The response of arboreal marsupials to landscape context: a large-scale fragmentation study. Ecological Applications 9:594611.Google Scholar
Londei, T. 2000. The cheetah (Acinonyx jubatus) dewclaw: specialization overlooked. Journal of Zoology 251:535537.Google Scholar
Looney, M., Kyratzis, I., Truong, Y., and Wassenberg, J.. 2002. Enhancing the unique properties of kangaroo leather. RIRDC Publication 02/105, Barton, Australia.Google Scholar
Lydekker, R. 1894. A handbook of the Marsupialia and Monotremata. Allen’s Naturalist’s Library, London.CrossRefGoogle Scholar
MacDonald, D. W. 1984. The encyclopedia of mammals. Facts on File, New York.Google Scholar
MacFadden, B. J. 1998. Tale of two rhinos: isotope ecology, paleodiet, and niche differentiation of Aphelops and Teleoceras from the Florida Neogene. Paleobiology 24:274286.Google Scholar
Maddison, W. P. 1991. Squared-change parsimony reconstructions of ancestral states for continuous-valued characters on a phylogenetic tree. Systematic Zoology 40:304314.Google Scholar
Maddison, W. P., and Maddison, D. R.. 2011. Mesquite: a modular system for evolutionary analysis. Version 2.75. http://mesquiteproject.org.Google Scholar
Martins, E. P, and Hansen, T. F.. 1997. Phylogenies and the comparative method: a general approach to incorporating phylogenetic information into the analysis of interspecific data. American Naturalist 149:646667.Google Scholar
Martín-Serra, A., Figueirido, B., and Palmqvist, P.. 2014a. A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PloS ONE 9:e85574.Google Scholar
Martín-Serra, A., Figueirido, B., and Palmqvist, P.. 2014b. A three-dimensional analysis of the morphological evolution and locomotor behaviour of the carnivoran hind limb. BMC Evolutionary Biology 14:129.CrossRefGoogle ScholarPubMed
Martín-Serra, A., Figueirido, B., Pérez-Claros, J. A., and Palmqvist, P.. 2015. Patterns of morphological integration in the appendicular skeleton of mammalian carnivores. Evolution 69:321340.Google Scholar
McArdle, B., and Rodrigo, A. G.. 1994. Estimating the ancestral states of a continuous-valued character using squared-change parsimony: an analytical solution. Systematic Biology 43:573578.Google Scholar
McHenry, C. R., Wroe, S., Clausen, P. D., Moreno, K., and Cunningham, E.. 2007. Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation. Proceedings of the National Academy of Sciences USA 4:1601016015.Google Scholar
Meachen-Samuels, J. A. 2012. Morphological convergence of the prey-killing arsenal of sabertooth predators. Paleobiology 38:114.Google Scholar
Meachen-Samuels, J. A., and Van Valkenburgh, B.. 2009. Forelimb indicators of prey-size preference in the Felidae. Journal of Morphology 270:729744.Google Scholar
Mendel, F. C. 1981. Use of hands and feet of two-toed sloths (Choloepus hoffmanni) during climbing and terrestrial locomotion. Journal of Mammalogy 62:413421.Google Scholar
Mendel, F. C. 1985. Use of hands and feet of three-toed sloths (Bradypus variegatus) during climbing and terrestrial locomotion. Journal of Mammalogy 66:359366.Google Scholar
Midford, P. E., Garland, T. Jr., and Maddison, W.. 2002. PDAP: PDTREE package for Mesquite, Version 1.00.Google Scholar
Monteiro, L. R. 1999. Multivariate regression models and geometric morphometrics: the search for causal factors in the analysis of shape. Systematic Biology 48:192199.Google Scholar
Nedin, C. 1991. The dietary niche of the extinct Australian marsupial lion: Thylacoleo carnifex Owen. Lethaia 24:115118.Google Scholar
Nowak, R. M. 1999. Walker’s carnivores of the world, 7 ed.Johns Hopkins University Press, Baltimore.Google Scholar
Nyakatura, K., and Bininda-Emonds, O. R. P.. 2012. Updating the evolutionary history of Carnivora (Mammalia): a new species-level supertree complete with divergence time estimates. BMC Biology 10:12.Google Scholar
O’Connor, B. L., and Rarey, K. E.. 1979. Normal amplitudes of radioulnar pronation and supination in several genera of anthropoid primates. American Journal of Physical Anthropology 51:3943.Google Scholar
Owen, R. 1859. On the fossil mammals of Australia. Part 1. Description of a mutilated skull of a large marsupial carnivore (Thylacoleo carnifex, Owen), from a calcareous conglomerate stratum, eighty miles SW of Melbourne, Victoria. Philosophical Transactions of the Royal Society of London 149:309322.Google Scholar
Owen, R. 1871. On the fossil mammals of Australia. Part IV. Dentition and mandible of Thylacoleo carnifex, with remarks on the arguments for its herbivority. Philosophical Transactions of the Royal Society of London 161:213266.Google Scholar
Palmqvist, P., Perez-Carlos, J. A., Janis, C. M., Figueirido, B., Torregrosa, V., and Gröcke, D. R.. 2008. Biogeochemical and ecomorphological inferences on prey selection and resource partitioning among mammalian carnivores in an early Pleistocene community. Palaios 23:724737.Google Scholar
Poglayen-Neuwall, I., and Toweill, D. E.. 1988. Bassariscus astutus. Mammalian Species 327:18.Google Scholar
Polly, P. D. 2001. Paleontology and the comparative method: ancestral node reconstructions versus observed node values. American Naturalist 157:596609.Google Scholar
Powell, R. A. 1981. Martes pennanti. Mammalian Species 156:16.Google Scholar
Procter-Gray, E., and Ganslosser, U.. 1986. The individual behaviors of Lumholtz’s tree-kangaroo: repertoire and taxonomic implications. Journal of Mammalogy 67:343352.CrossRefGoogle Scholar
Quinn, A., and Wilson, D. E.. 2002. Indri indri. Mammalian Species 694:15.Google Scholar
Rayfield, E. J. 2007. Finite element analysis and understanding the biomechanics and evolution of living and fossil organisms. Annual Review of Earth and Planetary Sciences 35:541576.Google Scholar
Rohlf, F. J. 2001. Comparative methods for the analysis of continuous variables: geometric interpretations. Evolution 55:21432160.Google Scholar
Rohlf, F. J. 2002. Geometric morphometrics and phylogeny. Pp. 175193 in N. MacLeod, and P. L. Forey, eds. Morphology, shape, and phylogeny. Taylor and Francis, London.Google Scholar
Rohlf, F. J. 2008. Tps series sofware. Morphometrics at SUNY Stony Brook. http://life.bio.sunysb.edu/morph/index.html.Google Scholar
Samuels, J. X., Meachen, J. A., and Sakai, S. A.. 2013. Postcranial morphology and the locomotor habits of living and extinct carnivorans. Journal of Morphology 274:121146.Google Scholar
Sears, K. E. 2004. Constraints on the morphological evolution of marsupial shoulder girdles. Evolution 58:23532370.Google Scholar
Sears, K. E. 2009. Differences in the timing of early limb development in mammals: the marsupial–placental dichotomy resolved. Evolution 63:21932200.Google Scholar
Sherratt, E., Gower, D. J., Klingenberg, C. P., and Wilkinson, M.. 2014. Evolution of cranial shape in caecilians (Amphibia: Gymnophiona). Evolutionary Biology 41:528545.Google Scholar
Sillero-Zubiri, C., and Marino, J.. 2004. Ethiopian wolf (Canis simensis). Pp. 167174 in C. Sillero-Zubiri, M. Hoffmann, and D. W. Macdonald, eds. Canids: foxes, wolves, jackals, and dogs: status survey and conservation action plan. IUCN, Gland, Switzerland, and Cambridge, U.K.Google Scholar
Solounias, N., Rivals, F., and Semprebon, G. M.. 2010. Dietary interpretation and paleoecology of herbivores from Pikermi and Samos (late Miocene of Greece). Paleobiology 36:113136.Google Scholar
Slater, G. J., and Van Valkenburgh, B.. 2008. Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology 34:403419.Google Scholar
Taylor, B. K. 1978. The anatomy of the forelimb in the anteater (Tamandua) and its functional implications. Journal of Morphology 157:347367.Google Scholar
Taylor, M. E. 1974. The functional anatomy of the forelimb of some African Viverridae (Carnivora). Journal of Morphology 143:307335.Google Scholar
Thewissen, J. G. M., and Fish, F. E.. 1997. Locomotor evolution in the earliest cetaceans: functional model, modern analogues, and paleontological evidence. Paleobiology 23:482490.CrossRefGoogle Scholar
Timm, N. 2002. Applied multivariate analysis. Springer-Verlag, New York.Google Scholar
Tseng, Z. J., and Wang, X.. 2010. Cranial functional morphology of fossil dogs and adaptation for durophagy in Borophagus and Epicyon (Carnivora, Mammalia). Journal of Morphology 271:13861398.Google Scholar
Tseng, Z. J., Antón, M., and Salesa, M. J.. 2011. The evolution of the bone-cracking model in carnivorans: cranial functional morphology of the Plio-Pleistocene cursorial hyaenid Chasmaporthetes lunensis (Mammalia: Carnivora). Paleobiology 37:140156.Google Scholar
Van Valkenburgh, B. 1987. Skeletal indicators of locomotor behavior in living and extinct carnivores. Journal of Vertebrate Paleontology 7:162182.Google Scholar
Wainwright, P. C. 1991. Ecomorphology: experimental functional anatomy for ecological problems. American Zoologist 31:680693.Google Scholar
Warburton, N. M., Harvey, K. J., Prideaux, G. J., and O’Shea, J. E.. 2011. Functional morphology of the forelimb of living and extinct tree-kangaroos (Marsupialia: Macropodidae). Journal of Morphology 272:12301244.Google Scholar
Weisbecker, V., and Archer, M.. 2008. Parallel evolution of hand anatomy in kangaroos and vombatiform marsupials: functional and evolutionary implications. Palaeontology 51:321338.Google Scholar
Weisbecker, V., Goswami, A., Wroe, S., and Sánchez-Villagra, M. R.. 2008. Ossification heterochrony in the therian postcranial skeleton and the marsupial–placental dichotomy. Evolution 62:20272041.Google Scholar
Wells, R. T., and Nichol, B.. 1977. On the manus and pes of Thylacoleo carnifex Owen (Marsupialia). Transactions of the Royal Society of South Australia 101:139146.Google Scholar
Wells, R. T., Horton, D. R., and Rogers, P.. 1982. Thylacoleo carnifex Owen (Thylacoleonidae): marsupial carnivore? Pp. 573586 in M. Archer, and G. Clayton, eds. Carnivorous marsupials. Royal Zoological Society of New South Wales, Sydney.Google Scholar
Wells, R. T., Murray, P. F., and Bourne, S. J.. 2009. Pedal morphology of the marsupial lion Thylacoleo carnifex (Diprotodontia: Thylacoleonidae) from the Pleistocene of Australia. Journal of Vertebrate Paleontology 29:13351340.Google Scholar
White, J. L. 1993. Indicators of locomotor habits in xenarthrans: evidence for locomotor heterogeneity among fossil sloths. Journal of Vertebrate Paleontology 13:230242.Google Scholar
Wilson, D. E., and Mittermeier, R. A.. 2009. Handbook of the mammals of the World, Vol. 1. Carnivores. Lynx Edicions, Barcelona.Google Scholar
Witmer, L. M. 1995. The extant phylogenetic bracket and the importance of reconstructing soft tissue in fossils. Pp. 19–33 in Functional morphology in vertebrate paleontology, J. J. Thomason, ed. Cambridge University Press, Cambridge.Google Scholar
Wroe, S. 2000. Move over sabre-tooth tiger. Nature Australia, Spring 2000:4451.Google Scholar
Wroe, S. 2003. Australian marsupial carnivores: recent advances in palaeontology. Pp. 102123 in M. Jones, C. Dickman, and M. Archer, eds. Predators with pouches: the biology of marsupial carnivores. CSIRO, Collingwood, Australia.Google Scholar
Wroe, S. 2008. Cranial mechanics compared in extinct marsupial and extant African lions using a finite-element approach. Journal of Zoology 274:332339.Google Scholar
Wroe, S., Myers, T. J., Wells, P. T., and Gillespie, A.. 1999. Estimating the weight of the Pleistocene marsupial lion (Thylacoleo carnifex): implications for the ecomorphology of a marsupial super-predator and hypotheses of impoverishment of Australian marsupial carnivore faunas. Australian Journal of Zoology 47:489498.Google Scholar
Wroe, S., Ebach, M., Ahyong, S., de Muizon, C., and Muirhead, J.. 2000. Cladistic analysis of dasyuromorphian (Marsupialia) phylogeny using cranial and dental features. Journal of Mammalogy 81:10081024.Google Scholar
Wroe, S., Myers, T., Seebacher, F., Kear, B., Gillespie, A., Crowther, M., and Salisbury, S.. 2003. An alternative method for predicting body mass: the case of the Pleistocene marsupial lion. Paleobiology 29:403411.Google Scholar
Wroe, S., McHenry, C., and Thomason, J.. 2005. Bite club: comparative bite force in big biting mammals and the prediction of predatory behaviour in fossil taxa. 272:619625.Google Scholar
Wroe, S., Lowry, M. B., and Anton, M.. 2008. How to build a mammalian super-predator. Zoology 111:196203.Google Scholar
Youlatos, D. 1996. Atelines, apes and wrist joints. Folia Primatologica 67:9398.Google Scholar