Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T20:47:40.813Z Has data issue: false hasContentIssue false

Intraspecific bimodal variability in eye lenses of two Devonian trilobites

Published online by Cambridge University Press:  07 September 2015

Catherine Crônier
Affiliation:
Université Lille 1, UFR Sciences de la Terre, Unité 8198 EvoEcoPaléo, 59655 Villeneuve d'Ascq Cedex, France. E-mail: catherine.cronier@univ-lille1.fr
Petr Budil
Affiliation:
Czech Republic & Faculty of Environmental Science, Czech University of Life Sciences, Kamýcká 129, CZ-165 21 Praha 6 – Suchdol, Czech Republic and Czech Geological Survey, Klárov 3, 118 21 Prague 1, Czech Republic. E-mail: phacopidina@seznam.cz, petr.budil@geology.cz.
Oldřich Fatka
Affiliation:
Charles University, Faculty of Science, Institute of Geology and Palaeontology, Albertov 6, 128 43 Prague 2, Czech Republic. E-mail: fatka@natur.cuni.cz.
Lukáš Laibl
Affiliation:
National Museum, Prague, Václavské nám. 68, 115 79 Praha 1, Czech Republic. E-mail: lukas.laibl@gmail.com.

Abstract

Arthropods are known to display a variable number of eye lenses and this number mostly increases during their development. In trilobites, most species possessing schizochroal eyes exhibit a notable intraspecific variation in the number of dorso ventral files of eye lenses that can be age related (i.e., growth) or not (i.e., living environment). Several previous studies have shown that some trilobite groups (e.g. phacopids) tend to have fewer lenses/files in representatives from the deeper habitats than those from shallower habitats. In this study, we analyzed the pattern of variation in the number of dorso ventral files of eye lenses in two Devonian phacopid trilobites from the Prague Basin of the Czech Republic. We quantified their intraspecific variability. To better understand the patterning, we compared more than 120 individuals. Data first reveal evidence of a bimodal distribution of lens/file number without intermediate forms among each of two studied populations of Prokops prokopi (Chlupáč, 1971) and throughout the ontogeny of Pedinopariops insequens (Chlupáč, 1977). Our results indicate that caution must be taken for taxonomical affiliation and biodiversity analyses of taxa in which the intraspecific variability is unclear. Additionally, we investigated possible relations of these bimodalities to the stratigraphical position of studied populations and to the paleoenvironment. In Prokops prokopi, a slightly different age of both populations, together with supposed differences in the local environments can be responsible for observed variability. In Pedinopariops insequens, stress conditions possibly related to the approaching onset of the Basal Choteč Event can be responsible for surprising intrapopulation variability. We speculate that the stress conditions could cause a bimodal selection and possibly also the change of ontogenetic trajectory within this species. Pedinopariops insequens was the only phacopid in the Prague Basin that crosses the Lower/Middle Devonian boundary and survived also the onset of Basal Choteč Event.

Type
Articles
Copyright
Copyright © 2015 The Paleontological Society. All rights reserved. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Aberhan, M., Nürnberg, S., and Kiessling, W.. 2012. Vision and the diversification of Phanerozoic marine invertebrates. Paleobiology 38:187204.CrossRefGoogle Scholar
Abrams, P. A., Rueffler, C., and Kim, G.. 2008. Determinants of the strength of disruptive and/or divergent selection arising from resource competition. Evolution 62:15711586.CrossRefGoogle ScholarPubMed
Adams, D. C., Rohlf, F. J., and Slice, D. E.. 2004. Geometric morphometrics: ten years of progress following the ‘revolution’. Italian Journal of Zoology 71:516.CrossRefGoogle Scholar
Barrande, J. 1846. Notice préliminaire sur le Systême silurien et les trilobites de Bohême. Hirschfeld, Leipzig.CrossRefGoogle Scholar
Barrande, J 1852. Système silurien du centre de la Bohême. Ière partie: Recherches Paléontologiques. I. Crustacés: Trilobites. Prague, Paris.Google Scholar
Berkyová, S. 2009. Lower-Middle Devonian (upper Emsian-Eifelian, serotinus-kockelianus zones) conodont faunas from the Prague Basin, the Czech Republic. Bulletin of Geosciences 84:667686.CrossRefGoogle Scholar
Bignon, A., and Crônier, C.. 2014. Trilobite faunal dynamics on the Devonian continental shelves of the Ardenne Massif and Boulonnais (France, Belgium). Acta Palaeontologica Polonica. (doi: org/10.4202/app.00019.2013.CrossRefGoogle Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Bouček, B. 1931. O některých nových bohatých nalezištích zkamenělin ve starším paleozoiku středních Čech. Věda přírodní 12:136144.Google Scholar
Brayard, A., Bucher, H., Escarguel, G., Fluteau, F., Bourquin, S., and Galfetti, T.. 2006. The Early Triassic ammonoid recovery: paleoclimatic significance of diversity gradients. Palaeogeography, Palaeoclimatology, Palaeoecology 239:374395.CrossRefGoogle Scholar
Budil, P. 1999. Some comments on the genus Ormathops Delo from the Bohemian Ordovician. Acta Universitatis Carolinae, Geologica 43:373376.Google Scholar
Budil, P., Hörbinger, F., and Mencl, R.. 2009. Lower Devonian dalmanitid trilobites of the Prague Basin (Czech Republic). Earth and Environmental Science Transactions of the Royal Society of Edinburgh, Earth Sciences 99:61100.Google Scholar
Carls, P., Slavík, L., and Valenzuela-Ríos, J. I.. 2008. Comments on the GSSP for the basal Emsian stage boundary: the need for its redefinition. Bulletin of Geosciences 83:383390.CrossRefGoogle Scholar
Cavalazzi, B. 2006. Kess Kess carbonate mounds, Hamar Laghdad, Tafilalt, Anti-Atlas, SE Morocco – A Field Guide, Morocco. UNESCO Field Action, 01–05 December 2006, p. 20.Google Scholar
Chlupáč, I. 1957. Faciální vývoj a biostratigrafie středočeského spodního devonu (Facial development and biostratigraphy of the Lower Devonian of Central Bohemia). Sborník Ústředního ústavu geologického, oddíl geologický 23:369448.Google Scholar
Chlupáč, I 1959. Faciální vývoj a biostratigrafie břidlic dalejských a vápenců hlubočepských (eifel) ve středočeském devonu (Facial development and biostratigraphy of the Daleje Shale and the Hlubočepy Limestone (Eifelian) in the Devonian of Central Bohemia). Sborník Ústředního ústavu geologického, oddělení geologické 25:446511.Google Scholar
Chlupáč, I 1971. New phacopid trilobites from the Devonian of Czechoslovakia. Časopis pro mineralogii a geologii 16:255261.Google Scholar
Chlupáč, I 1977. The phacopid trilobites of the Silurian and Devonian of Czechoslovakia. Rozpravy Ústředního ústavu geologického 43:1172.Google Scholar
Chlupáč, I 1982. Preliminary submission for Lower-Middle Devonian boundary stratotype in the Barrandian area. Courier Forschungsinstitut Senckenberg 55:8596.Google Scholar
Chlupáč, I 1983. Trilobite assemblages in the Devonian of the Barrandian area and their relations to palaeoenvironments. Geologica et Palaeontologica 17:4573.Google Scholar
Chlupáč, I 1985. Comments of the Lower-Middle Devonian boundary. Courier Forschungsinstitut Senckenberg 75:389400.Google Scholar
Chlupáč, I 1988. Geologické zajímavosti pražského okolí. Academia, Praha (in Czech).Google Scholar
Chlupáč, I 1993. Geology of the Barrandian. A field trip guide. Senckenberg-Buch 69. Verlag Waldemar Kramer, Frankfurt am Main.Google Scholar
Chlupáč, I 1994. Devonian trilobites – Evolution and events. Geobios 27:487505.CrossRefGoogle Scholar
Chlupáč, I 1999. Vycházky za geologickou minulostí pražského okolí, (second edition). Academia, Praha in Czech.Google Scholar
Chlupáč, I., Feist, R., and Morzadec, P.. 2000. Trilobites and standard Devonian stage boundaries. Courier Forschungsinstitut Senckenberg 220:8798.Google Scholar
Chlupáč, I., Lukeš, P., and Zikmundová, J.. 1979. The Lower-Middle Devonian boundary beds in the Barrandian area, Czechoslovakia. Geologica et Palaeontologica 13:125156.Google Scholar
Chlupáč, I., Havlíček, V., Kříž, J., Kukal, Z., and Štorch, P.. 1998. Palaeozoic of the Barrandian (Cambrian to Devonian). Czech Geological Survey, Prague.Google Scholar
Chlupáč, I., and Kukal, Z.. 1988. Possible global events and the stratigraphy of the Palaeozoic of the Barrandian (Cambrian-Middle Devonian, Czechoslovakia). Sborník geologických věd, Geologie 43:83146.Google Scholar
Chow, G. C. 1960. Tests of equality between sets of coefficients in two linear regressions. Econometrica 28:591605.CrossRefGoogle Scholar
Clarkson, E. N. K. 1966a. Schizochroal eyes and vision in some Silurian acastid trilobites. Palaeontology 9:129.Google Scholar
Clarkson, E. N. K 1966b. Schizochroal eyes and vision in some phacopid trilobites. Palaeontology 9:464487.Google Scholar
Clarkson, E. N. K 1971. On the early schizochroal eyes of Ormathops (Trilobita: Zeliszkellinae). Mémoires du Bureau des Recherches Géologiques et Minières 73:5163.Google Scholar
Clarkson, E. N. K 1979. The visual system of trilobites. Palaeontology 22:122.Google Scholar
Clarkson, E. N. K., and Tripp, R. P.. 1982. The Ordovician trilobites Calyptaulax brongniartii (Portlock). Transactions of the Royal Society of Edinburgh, Earth Sciences 72:287294.CrossRefGoogle Scholar
Clarkson, E. N. K, Levi-Setti, R., and Horvath, G.. 2006. The eyes of trilobites: the oldest preserved visual system. Arthropod Structure Development 35:247259.CrossRefGoogle ScholarPubMed
Crônier, C., and Clarkson, E. N. K.. 2001. Variation of eye-lens distribution in a new Late Devonian phacopid trilobite. Transactions of the Royal Society of Edinburgh 92:103113.CrossRefGoogle Scholar
Crônier, C., and Fortey, R. A.. 2006. Morphology and ontogeny of an Early Devonian Phacopid trilobite with reduced sight from southern Thailand. Journal of Paleontology 80:529536.CrossRefGoogle Scholar
Crônier, C., Feist, R., and Auffray, J.-C.. 2004. Variation in the eye of Acuticryphops (Phacopina, Trilobita) and its evolutionary significance: a biometric and morphometric approach. Paleobiology 30:470480.2.0.CO;2>CrossRefGoogle Scholar
Darwin, C., and Wallace, A. R.. 1958. Evolution by natural selection: a centenary commemorative volume. Cambridge University Press, Cambridge.Google Scholar
Dieckmann, U., and Doebeli, M.. 1999. On the origin of species by sympatric speciation. Nature 400:354357.CrossRefGoogle ScholarPubMed
De Baets, K., Klug, C., and Monnet, C.. 2012. Intraspecific variability through ontogeny in early ammonoids. Paleobiology 39:7594.CrossRefGoogle Scholar
Doebeli, M., Blok, H. J., Leimar, O., and Dieckmann, U.. 2007. Multimodal pattern formation in phenotype distributions of sexual populations. Proceedings of the Royal Society B 274:347357.CrossRefGoogle ScholarPubMed
Feist, R., McNamara, K. J., Crônier, C., and Lerosey-Aubril, R.. 2009. Patterns of extinction and recovery of phacopid trilobites during the Frasnian-Famennian (Late Devonian) mass extinction event, Canning Basin, Western Australia. Geological Magazine 146:1233.CrossRefGoogle Scholar
Fisher, F. M. 1970. Tests of equality between sets of coefficients in two linear regressions: An expository note. Econometrica 38:361366.CrossRefGoogle Scholar
Frankham, R., Ballou, J. D., and Briscoe, D. A.. 2002. Introduction to Conservation Genetics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Frýda, J., Ferrová, L., and Frýdová, B.. 2013. Review of palaeozygopleurid gastropods (Palaeozygopleuridae, Gastropoda) from Devonian strata of the Perunica microplate (Bohemia), with a re-evaluation of their stratigraphic distribution, notes on their ontogeny, and descriptions of new taxa. Zootaxa 3669:469489.CrossRefGoogle ScholarPubMed
Galle, A., and Parsley, R. L.. 2005. Epibiont relationships on hyolithids demonstrated by Ordovician trepostomes (Bryozoa) and Devonian tabulates (Anthozoa). Bulletin of Geosciences 80:125138.Google Scholar
Gradstein, F. M., Ogg, J. G., Schmitz, M., and Ogg, G.. 2012. The Geologic Time Scale 2012. Elsevier.Google Scholar
Hallgrímsson, B., and Hall, B. K.. 2005. Variation: a central concept in biology. Elsevier, Amsterdam.Google Scholar
Hammer, Ø., Harper, D. A. T., and Ryan, P. D.. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica 4:19.Google Scholar
Hammer, Ø., and Harper, D. A. T.. 2006. Paleontological Data Analysis. Blackwell.Google Scholar
Harzsch, S., and Hafner, G.. 2006. Evolution of eye development in arthropods: phylogenetic aspects. Arthropod Structure & Development 35:319340.CrossRefGoogle ScholarPubMed
Havlíček, V., and Vaněk, J.. 1998. Pragian brachiopods, trilobites, and principal biofacies in the Prague Basin (Lower Devonian, Bohemia). Sborník geologických věd, Řada P, Paleontologie 34:27109.Google Scholar
Hawle, I., and Corda, A. J. C.. 1847. Prodrom einer Monographie der böhmischen Trilobiten. J.G. Calve, Prague. Reprint, 1848. Abhandlungen der königlichen böhmischen Gesellschaft der Wissenschaften 5:117292.Google Scholar
Hunt, G. 2007. Variation and early evolution. Science 317:459460.CrossRefGoogle ScholarPubMed
Kaufmann, B. 1997. Middle Devonian reef and mud mounds on a carbonate ramp: Mader Basin (eastern Anti-Atlas, Morocco). Geological Society, London, Special Publications 149:417435.CrossRefGoogle Scholar
Kaufmann, B 1998. Facies, stratigraphy and diagenesis of Middle Devonian reef- and mud-mounds in the Mader (eastern Anti-Atlas, Morocco). Acta Geologica Polonica 48:43106.Google Scholar
Klapper, G., and Vodrážková, S.. 2013. Ontogenetic and intraspecific variation in the late Emsian-Eifelian (Devonian) conodonts Polygnathus serotinus and P. bultyncki in the Prague Basin (Czech Republic) and Nevada (western U.S.). Acta Geologica Polonica 63:153174.CrossRefGoogle Scholar
Klingenberg, C. P., and McIntyre, G. S.. 1998. Geometric morphometrics of developmental instability: analyzing patterns of fluctuating asymmetry with Procrustes methods. Evolution 52:13631375.CrossRefGoogle ScholarPubMed
Kristjánsson, B. K., Skúlason, S., and Noakes, D. L. G.. 2002. Morphological segregation of Icelandic threespine stickleback (Gasterosteus aculeatus L). Biological Journal of the Linnean Society 76:247257.CrossRefGoogle Scholar
Kříž, J. 1999. Geologické památky Prahy. Český geologický ústav, Praha.Google Scholar
Levi-Setti, R., Clarkson, E. N. K., and Horwáth, G.. 1998). Paleontologia dell’occhio. Pp. 365–379 in Frontiere della Vita: Enciclopedia Italiana.Google Scholar
Lomax, R. G. 2007. Statistical Concepts: A Second Course for Education and the Behavioral Sciences, (3rd edition). Lawrence Erlbaum Associates, Mahwah, New Jersey.Google Scholar
Mann, H. B., and Whitney, D. R.. 1947. On a Test of Whether one of Two Random Variables is Stochastically Larger than the Other. Annals of Mathematical Statistics 18:5060.CrossRefGoogle Scholar
Månsson, K., and Clarkson, E. N. K.. 2012. Ontogeny of the Upper Cambrian (Furongian) olenid trilobite Protopeltura aciculata (Angelin, 1854) from Skåne and Våstergötland, Sweden. Palaeontology 55:887901.CrossRefGoogle Scholar
Martin, R. A., and Pfenning, D.W.. 2012. Widespread disruptive selection in the wild is associated with intense resource competition. BMC. Evolutionary Biology 12:136149.Google Scholar
Maynard Smith, J. 1962. Disruptive selection, polymorphism and sympatric speciation. Nature 195:6062.CrossRefGoogle Scholar
Nilsson, D. E., and Kelber, A.. 2007. A functional analysis of compound eye evolution. Arthropod Structure and Development 36:373385.CrossRefGoogle ScholarPubMed
Oakley, T. H. 2003. On Homology of Arthropod Compound Eyes. Integrative and Comparative Biology 43:522530.CrossRefGoogle ScholarPubMed
Perner, J. 1918. Trilobiti pasma D-d1, z okoli pražského. Palaeontographica Bohemiae 9:151.Google Scholar
Popp, A., and Pärnaste, H.. 2011. Biometry and life style of the Ordovician proetide trilobite Cyamella stensioei Owens, 1979. GFF 133:111123.CrossRefGoogle Scholar
Ramel, C. 1998. Biodiversity and intraspecifiic genetic variation. Pure and Applied Chemistry 70:20792084.CrossRefGoogle Scholar
Richter, R. 1854. Thüringische Tentaculiten. Zeitschrift der Deutschen Geologischen Gesellschaft 6:275290.Google Scholar
Rohlf, F. J. 1993. Relative warps analysis and an example of its application to mosquito wings. Pp. 131159in L. F. Marcus, E. Bello, and A. Garcia-Valdecasas, eds. Contributions to morphometrics. Madrid, Museu Nacional de Ciencias Naturales.Google Scholar
Rohlf, F. J 2003a. TpsSuper. Version 1.06. Department of Ecology and Evolution, State University of New York, Stony Brook, NY.Google Scholar
Rohlf, F. J 2003b. TpsRelw. Version 1.21. Department of Ecology and Evolution, State University of New York, Stony Brook, NY.Google Scholar
Rohlf, F. J., and Slice, D. E.. 1990. Extensions of the Procrustes methods for the optimal superimposition of landmarks. Systematic Zoology 39:4950.CrossRefGoogle Scholar
Rueffler, C., , T., Van Dooren, J. M., Leimar, O., and Abrams, P. A.. 2006. Disruptive selection and then what? Trends in Ecology and Evolution 21:238245.CrossRefGoogle Scholar
Rundle, H. D., and Nosil, P.. 2005. Ecological speciation. Ecology Letters 8:336352.CrossRefGoogle Scholar
Růžička, R. 1940. Faunistické seznamy z Barrandienu ze souvrství gα v okolí pražském. Věstník Královské české společnosti nauk, Třída mathematicko přírodovědná, 1–25.Google Scholar
Růžička, R 1941. Faunistické seznamy z Barrandienu ze souvrství gα (část II) a ze dvou lokalit gγ v okolí pražském. Věstník Královské české společnosti nauk, Třída mathematicko přírodovědná, 1–16.Google Scholar
Salgado-Ugarte, I. H., Shimizu, M., and Taniuchi, T.. 1994. Exploring the shape of univariate data using Kernel density estimators. Stata Technical Bulletin 16:819.Google Scholar
Salgado-Ugarte, I. H., Shimizu, M., Taniuchi, T., and Matsushita, K.. 2002. Nonparametric Assessment of Multimodality for Size Frequency Distributions. Asian Fisheries Science 15:295303.CrossRefGoogle Scholar
Schluter, D. 2000. The Ecology of Adaptive Radiation. New York: Oxford University Press.CrossRefGoogle Scholar
Silverman, B. W. 1986. Density estimation for statistics and data analysis. Chapman & Hall.Google Scholar
Skúlason, S., and Smith, T. B.. 1995. Resource polymorphisms in vertebrates. Trends in Ecology & Evolution 10:366370.CrossRefGoogle ScholarPubMed
Slavík, L. 2004a. A new conodont zonation of the Pragian Stage (Lower Devonian) in the Stratotype area (Barrandian, Central Bohemia). Newsletters on Stratigraphy 40:3971.CrossRefGoogle Scholar
Slavík, L 2004b. The Pragian-Emsian conodont successions of the Barrandian area: search of an alternative to the GSSP polygnathid-based. Geobios 37:454470.CrossRefGoogle Scholar
Slavík, L., Valenzuaela-Ríos, J. I., Hladil, J., and Carls, P.. 2007. Early Pragian conodont-based correlations between the Barrandian area and the Spanish Central Pyrenees. Geological Journal 42:499512.CrossRefGoogle Scholar
Suchý, V. 2002. The “white beds” – a fossil caliche of the Barrandian area: its origin and paleoenvironmental significance. Journal of the Czech Geological Society 47:4554.Google Scholar
Thomas, A. T. 1998. Variation in the eyes of the Silurian trilobites Eophacops and Acaste and its significance. Palaeontology 41:897911.Google Scholar
Urdy, S., Goudemand, N., Bucher, H., and Chirat, R.. 2010. Growth dependent phenotypic variation of molluscan shell shape: implications for allometric data interpretation. Journal of Experimental Zoology Part B 314:303326.CrossRefGoogle ScholarPubMed
Vaněk, J. 1999. Pražský stupeň (spodní devon) v Pražské pánvi a relativní stáří jeho faciií (Česká republika). Part 2. New taxa of trilobites from Pragian, Bohemia. Palaeontologia Bohemiae 5:3967.Google Scholar
Vodrážková, S., Frýda, J., Suttner, T. J., Koptíková, L., and Tonarová, P.. 2013. Environmental changes close to the Lower–Middle Devonian boundary; the Basal Chotec Event in the Prague Basin (Czech Republic). Facies 59:425449.CrossRefGoogle Scholar
Woldřich, J. 1919. Das Prokopital südlich von Prag. Jahrbuch der k.k. geologischen Reichsanstalt 68:63112.Google Scholar
Waloszek, D., Chen, J.-Y., Maas, A., and Wang, X.-G.. 2005. Early Cambrian arthropods - new insights into arthropod head and structural evolution. Arthropod Structure and Development 34:189205.CrossRefGoogle Scholar