Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-06T15:57:40.219Z Has data issue: false hasContentIssue false

Komodo monitor (Varanus komodoensis) feeding behavior and dental function reflected through tooth marks on bone surfaces, and the application to ziphodont paleobiology

Published online by Cambridge University Press:  08 April 2016

Domenic C. D'Amore
Affiliation:
Graduate Program in Ecology and Evolution, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, New Jersey 08901. E-mail: domdam@eden.rutgers.edu
Robert J. Blumensehine
Affiliation:
Center for Human Evolutionary Studies, Department of Anthropology, Rutgers, The State University of New Jersey, 131 George Street, New Brunswick, New Jersey 08901-1414

Abstract

Most functional interpretations of ziphodont dentition are based on limited morphometric, behavioral, and taphonomic studies, but few are based on controlled observations of a modern ziphodont consumer. The purpose of this study is to determine through controlled feeding observations if the behaviors indicative of a ziphodont consumer are reflected by tooth marks left on bone surfaces by Varanus komodoensis, the Komodo monitor. We document feeding behavior, expand upon dental function, and correlate these aspects with tooth mark production. We also discuss the significance and limits of applying these data to fossil assemblages.

Goat carcasses were fed to 11 captive individuals. V. komodoensis modifies bone surfaces extensively. Individuals exhibit a “medial-caudal arc'7 when defleshing, followed by inertial swallowing. Bone crushing was not observed. The vast majority of tooth marks are scores, with pits being significantly less common. Tooth furrows and punctures are rare. “Edge marks” are produced on flat elements. Marks are elongate and narrow, with variable lengths and curvature. Over one-third of the marks occur within parallel clusters. Striations are evident on 5% of all marks.

Both feeding behavior and tooth marks indicate that ziphodont crowns are ideal for defleshing by being drawn distally through a carcass. Crowns are poorly built for crushing, and within-bone nutrients are acquired through swallowing. Mark production is a by-product of the distal crown movement during the flesh removal process. Scores are the consequence of apical dragging. Edge marks and striated scores result respectively from distal and mesial carinae contact. Mark curvature is the consequence of arcing motions. Parallel clusters may result from repetitive defleshing strokes and/or from multiple crown contacts during a stroke.

These observations can be used to draw functional, behavioral, and taphonomic interpretations from fossil assemblages. When they are provisionally applied to theropod tooth marks, similar crown function and defleshing behavior with little bone crushing is apparent. Differences occur concerning mark frequency and curvature, relating potentially to taphonomic biases and rostral motion, respectively.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Abler, W. L. 1992. The serrated teeth of tyrannosaurid dinosaurs, and biting structures in other animals. Paleobiology 18:161183.Google Scholar
Akersten, W. 1985. Canine function in Smilodon (Mammalia, Felidae, Machairodontinae). Los Angeles County Museum Contributions in Science 356:122.Google Scholar
Auffenberg, W. 1972. Komodo dragons. Natural History 81:5259.Google Scholar
Auffenberg, W. 1978. Social and feeding behavior in Varanus komodoensis . Pp. 301331 in Greenberg, N. and MacLean, P. D., eds. Behavior and neurology of lizards. National Institute of Mental Health, Bethesda, Md. Google Scholar
Auffenberg, W. 1981. The behavioral ecology of the Komodo monitor. University of Florida Press, Gainesville.Google Scholar
Bakker, R. T. 1980. Dinosaur heresy-dinosaur renaissance: why we need endothermic archosaurs for a comprehensive theory of bioenergetic evolution. Pp. 351–62 in Thomas, R. D. K. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs (AAAS Selected Symposium 28). Westview, Boulder, Colo. Google Scholar
Bakker, R. T. 1986. The dinosaur heresies. Morrow, New York.Google Scholar
Bakker, R. T. 1997. Raptor family values: allosaur parents brought giant carcasses into their lair to feed their young. Pp. 5163 in Dinofest International.Google Scholar
Benton, M. J. 2004. Origin and relationships of dinosaurs. Pp 720 in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria, 2d ed. University of California Press, Berkeley.Google Scholar
Binford, L. R. 1981. Bones: ancient men and modern myths. Academic Press, New York.Google Scholar
Binford, L. R., Mills, M. G. L., and Stone, N. 1988. Hyena scavenging behavior and its implications for the interpretation of faunal assemblages from FLK 22 (the Zinj Floor) at Olduvai Gorge. Journal of Anthropological Archaeology 7:99135.CrossRefGoogle Scholar
Blumenschine, R. J. 1986. Carcass consumption sequences and the archaeological distinction of scavenging and hunting. Journal of Human Evolution 15:639659.CrossRefGoogle Scholar
Blumenschine, R. J. 1988. An experimental model of the timing of hominid and carnivore influence on archeological bone assemblages. Journal of Archaeological Science 15:438502.CrossRefGoogle Scholar
Blumenschine, R. J. 1995. Percussion marks, tooth marks, and experimental determinations of the timing of hominid and carnivore access to long bones at FLK Zinjanthropus, Olduvai Gorge, Tanzania. Journal of Human Evolution 29:2151.Google Scholar
Blumenschine, R. J., and Marean, C. W. 1993. A carnivore's view of archaeological bone assemblages. Pp. 273301 in Hudson, J., ed. From bones to behavior: ethnoarchaeological and experimental contributions to the interpretation of faunal remains. Southern Illinois University, Carbondale.Google Scholar
Blumenschine, R. J., and Selvaggio, M. M. 1988. Percussion marks on bone surfaces as a new diagnostic of hominid behaviour. Nature 333:763765.Google Scholar
Blumenschine, R. J., Marean, C. W., and Capaldo, S. D. 1996. Blind tests of inter-analyst correspondence and accuracy in the identification of cat marks, percussion marks, and carnivore tooth marks on bone surfaces. Journal of Archeological Science 23:493507.CrossRefGoogle Scholar
Bolt, R. E., and Ewer, R. F. 1964. The functional anatomy of the head of the puff adder, Bitis arietans (Merr.). Journal of Morphology 114:83106.Google Scholar
Brain, C. K. 1981. The hunters or the hunted? An introduction to African cave taphonomy. University of Chicago Press, Chicago.Google Scholar
Burden, W. D. 1928. Observations on the habits and distributions of Varanus komodoensis Ouwens. American Museum Novitates 316:110.Google Scholar
Busbey, A. B. 1995. The structural consequences of skull flattening in crocodilians. Pp. 173192 in Thomasson, J. J., ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Capaldo, S. D. 1997. Experimental determinations of carcass processing by Plio-Pleistocene hominids and carnivores at FLK 22 (Zinjanthropus), Olduvai Gorge, Tanzania. Journal of Human Evolution 33:555597.CrossRefGoogle ScholarPubMed
Carpenter, K. 1998. Evidence of predatory behavior by carnivorous dinosaurs. Gaia 15:135144.Google Scholar
Carpenter, K., Sanders, F., McWhinney, L. A., and Wood, L. 2005. Evidence for predator prey relationships: examples for Allosaurus and Stegosaurus. Pp. 325350 in Carpenter, K., ed. The carnivorous dinosaurs. Indiana University Press, Bloomington.Google Scholar
Chandler, C. L. 1990. Taxonomic and functional significance of serrated tooth morphology in theropod dinosaurs. . Yale University, New Haven, Conn. Google Scholar
Chure, D. J., Fiorillo, A. R., and Jacobsen, A. R. 1998. Prey bone utilization by predatory dinosaurs in the Late Jurassic of North America, with comments on prey bone use by dinosaurs throughout the Mesozoic. Gaia 15:227232.Google Scholar
Colbert, E. H. 1961. Dinosaurs: their discovery and their world. E. P. Dutton, New York.Google Scholar
Condon, K. 1987. A kinematic analysis of mesokinesis in the Nile monitor (Varanus niloticus). Experimental Biology 47:7387.Google Scholar
Currie, P. J., and Jacobsen, A. R. 1995. An azhdarchid pterosaur eaten by a velociraptorine theropod. Canadian Journal of Earth Science 32:922925.Google Scholar
Currie, P. J., Rigby, J. K. Jr., and Sloan, R. E. 1990. Theropod teeth from the Judith River Formation of southern Alberta, Canada. Pp. 107125 in Carpenter, K. and Currie, P. J., eds. Dinosaur systematics: perspectives and approaches. Cambridge University Press, Cambridge.Google Scholar
D'Amore, D. 2005. Feeding in the Komodo dragon, Varanus komodoensis: taphonomic and functional implications of ziphodont dentition. Journal of Vertebrate Paleontology 25(Suppl. to No. 3):49A.Google Scholar
Dodson, P. 1971. Sedimentology and taphonomy of the Oldman Formation (Campanian), Dinosaur Provincial Park, Alberta (Canada). Palaeogeography, Palaeoclimatology, Palaeoecology 10:2174.CrossRefGoogle Scholar
Dominguez-Rodrigo, M. 1999. Flesh availability and bone modifications in carcasses consumed by lions: palaeoecological relevance in hominid foraging patterns. Palaeogeography, Palaeoclimatology, Palaeoecology 149:373388.CrossRefGoogle Scholar
Dominguez-Rodrigo, M. 2001. A study of carnivore competition in riparian and open habitats of modern savannas and its implications for hominid behavioral modeling. Journal of Human Evolution 40:7798.CrossRefGoogle Scholar
Dominguez-Rodrigo, M., and Piqueras, A. 2003. The use of tooth pits to identify carnivore taxa in tooth-marked archaeofaunas and their relevance to reconstruct hominid carcass processing behaviours. Journal of Archaeological Science 30:13851391.Google Scholar
Drumheller, S. 2007. Experimental taphonomy and microanalysis of crocodylian bite marks. Journal of Vertebrate Paleontology 27(Suppl. to No. 3):70A.Google Scholar
Erickson, G. M., and Olson, K. H. 1996. Bite marks attributable to Tyrannosaurus rex: preliminary description and implications. Journal of Vertebrate Paleontology 16:175178.Google Scholar
Erickson, G. M., Van Kirk, S. D., Su, J., Levenston, M. E., Caler, W. E., and Carter, D. R., 1996. Bite-force estimation for Tyrannosaurus rex from tooth-marked bones. Science 382:706708.Google Scholar
Erickson, G. M. 1999. Breathing life into T-rex. Scientific American 281:3239.CrossRefGoogle Scholar
Farlow, J. O. 1976. Speculations about the diet and foraging behavior of large carnivorous dinosaurs. American Midland Naturalist 95:186191.Google Scholar
Farlow, J. O. 1983. Dragons and dinosaurs. Paleobiology 9:207210.CrossRefGoogle Scholar
Farlow, J. O., Brinkman, D. L., Abler, W. L., and Currie, P. J. 1991. Size, shape and serration density of theropod dinosaur lateral teeth. Modern Geology 16:161198.Google Scholar
Fiorillo, A. R. 1991a. Prey bone utilization by predatory dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology 88:157166.CrossRefGoogle Scholar
Fiorillo, A. R. 1991b. Taphonomy and depositional setting of Careless Creek Quarry (Judith River Formation), south-central Montana. Palaeogeography, Palaeoclimatology, Palaeoecology 81:281311.Google Scholar
Fowler, D. W., and Sullivan, R. M. 2006. Aceratopsid pelvis with toothmarks from the Upper Cretaceous Kirtland Formation, New Mexico: evidence of Late Campanian tyrannosaurids feeding behavior. In Lucas, S. G. and Sullivan, R. M., eds. Late Cretaceous vertebrates from the Western Interior. New Mexico Museum of Natural History and Science Bulletin 35:127130.Google Scholar
Frandson, R. D. 1974. Anatomy and physiology of farm animals. Lea and Febiger, Philadelphia.Google Scholar
Frazzetta, T. H. 1962. A functional consideration of cranial kinesis in lizards. Journal of Morphology 111:287319.CrossRefGoogle ScholarPubMed
Frazzetta, T. H. 1988. The mechanics of cutting and the form of shark teeth (Chondrichthyes, Elasmobranchii). Zoomorphology 108:93107.CrossRefGoogle Scholar
Frazzetta, T. H., and Kardong, K. V. 2002. Prey attack by a large theropod dinosaur. Science 416:387388.Google Scholar
Gans, C. 1961. The feeding mechanism of snakes and its possible evolution. American Zoologist 1:217227.Google Scholar
Gans, C. 1969. Comments on inertial feeding. Copeia 4:855857.Google Scholar
Gifford, D. P. 1981. Taphonomy and paleoecology: a critical review of archeology's sister disciplines. Pp. 365438 in Schiffer, M. B., ed. Advances in archeological method and theory, Vol. 4. Academic Press, New York.Google Scholar
Gignac, P., Makovicky, P., Erickson, G., and Walsh, R. 2007. The effect of tooth morphology on indentation force in non-avian theropod dinosaurs. Journal of Vertebrate Paleontology 27(Suppl. to No. 3):81A.Google Scholar
Henderson, D. M. 1998. Skull and tooth morphology as indicators of niche partitioning in sympatric Morrison Formation theropods. Gaia 15:219226.Google Scholar
Holtz, T. R. Jr. 1998. Spinosaurs as crocodile mimics. Science 282:12761277.CrossRefGoogle Scholar
Holtz, T. R. Jr. 2002. Theropod predation: evidence and ecomorphology. Pp. 325340 in Kelly, P. O. H., Kowalewski, M., and Hansen, T. A., eds. Predator-prey interaction in the fossil record (Topics in Geobiology 17). Kluwer/Plenum, New York.Google Scholar
Holtz, T. R. Jr. 2004. Tyrannosauroidea. Pp. 111136 in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria, 2d ed. University of California Press, Berkeley.Google Scholar
Holtz, T. R. Jr., Brinkman, D. L., and Chandler, C. L. 1998. Denticle morphometrics and a possible omnivorous feeding habit for the theropod dinosaur Troodon . Gaia 15:159166.Google Scholar
Hotton, N. III. 1980. An alternative to dinosaur endothermy: the happy wanderers. Pp. 311350 in Thomas, R. D. K. and Olson, E. C., eds. A cold look at the warm-blooded dinosaurs (AAAS Selected Symposium 28). Westview, Boulder, Colo. Google Scholar
Hunt, A. P., Meyer, C. A., Lockley, M. G., and Lucas, S. G. 1994. Archaeology, toothmarks and sauropod dinosaur taphonomy. Gaia 10:225231.Google Scholar
Jacobsen, A. R. 1995. Predatory behaviour of carnivorous dinosaurs: ecological interpretation based on tooth marked dinosaur bones and wear patterns of theropod teeth. . University of Copenhagen, Copenhagen.Google Scholar
Jacobsen, A. R. 1997. Tooth marks. Pp. 739739 in Currie, P. J. and Padian, K., eds. The encyclopedia of dinosaurs. Elsevier, Amsterdam.Google Scholar
Jacobsen, A. R. 1998. Feeding behaviour of carnivorous dinosaurs as determined by tooth marks on dinosaur bones. Historical Biology 13:1726.CrossRefGoogle Scholar
Jacobsen, A. R. 1999. Significance of a tooth-marked Saurornitholestes dentary on the feeding behavior of tyrannosaurids. Journal of Vertebrate Paleontology 19(Suppl. to No. 3):55A.Google Scholar
Jacobsen, A. R. 2001. Tooth-marked small theropod bone: an extremely rare trace. Pp. 5863 in Tanke, D. H. and Carpenter, K., eds. Mesozoic vertebrate life: new research inspired by the research of Philip J. Currie. Indiana University Press, Bloomington.Google Scholar
Jacobsen, A. R., and Ryan, M. 1999. Taphonomic aspects of theropod tooth-marked bones from an Edmontosaurus bone bed (lower Maastrichtian), Alberta, Canada. Journal of Vertebrate Paleontology 19(Suppl. to No. 3):55A.Google Scholar
Jensen, J. A. 1968. Withdrawing an old deposit from a national treasury. Our Public Lands 18:1417.Google Scholar
Kowalewski, M. 2002. The fossil record of predation: an overview of analytical methods. Paleontological Society Papers 8:342.Google Scholar
Langston, W. 1975. Ziphodont crocodiles: Pristichampsus vorax (Troxell), new combination, from the Eocene of North America. Fieldiana (Geology) 33:291314.Google Scholar
Marean, C. W., and Spencer, L. M. 1991. Impact of carnivore ravaging on zooarchaeological measures of element abundance. American Antiquity 56:645658.CrossRefGoogle Scholar
Marean, C. W., Spencer, L. M., Blumenschine, R. J., and Capaldo, S. D. 1992. Captive hyena bone choice and destruction, the Schlepp Effect and Olduvai archaeofaunas. Journal of Archaeological Science 19:101121.Google Scholar
Matthew, W. D. 1908. Allosaurus, a carnivorous dinosaur, and its prey. American Museum Journal 8:25.Google Scholar
McNab, B. K., and Auffenberg, W. 1976. The effect of large body size on the temperature regulation of the Komodo dragon, Varanus komodoensis . Comparative Biochemistry and Physiology A 55:345350.Google Scholar
Meers, M. B. 2002. Maximum bite force and prey size of Tyrannosaurus rex and their relationships to the inference of feeding behavior. Historical Biology 16:112.Google Scholar
Molnar, R. E. 1998. Mechanical factors in the design of the skull of Tyrannosaurus rex (Osborn, 1905). Gaia 15:193218.Google Scholar
Molnar, R. E. 2004. Dragons in the dust: the paleobiology of the giant monitor lizard Megalania. Indiana University Press, Bloomington.Google Scholar
Molnar, R. E., and Farlow, J. O. 1990. Carnosaur paleobiology. Pp. 210224 in Weishampel, D. B., Dodson, P., and Osmólska, H., eds. The Dinosauria. University of California Press, Berkeley.Google Scholar
Moreno, K., Wroe, S., McHenry, C., Clausen, P., and D'Amore, D. 2007. Komodo dragon cranial mechanics and kinesis as revealed by high-resolution finite element analysis. Journal of Vertebrate Paleontology 27(Suppl. to No. 3):120A.Google Scholar
Moreno, K., Wroe, S., McHenry, C., Clausen, P., D'Amore, D. C., Rayfield, E. J., and Cunningham, E. 2008. Cranial performance in the Komodo dragon (Varanus komodoensis) as revealed by high-resolution 3-D finite element analysis. Journal of Anatomy 212:736746.Google Scholar
Munson, P. J. 2000. Age correlated differential destruction of bones and its effect on archaeological mortality profiles of domestic sheep and goats. Journal of Archaeological Science 27:391407.Google Scholar
Munson, P. J., and Garniewicz, R. C. 2003. Age-mediated survivorship of ungulate mandibles and teeth in canid-ravaged faunal assemblages. Journal of Archaeological Science 30:405416.Google Scholar
Njau, J. K., and Blumenschine, R. J. 2006. A diagnosis of crocodile feeding traces on larger mammal bones, with fossil examples from the Plio-Pleistocene Olduvai basin, Tanzania. Journal of Human Evolution 50:142162.Google Scholar
Paul, G. S. 1988. Predatory dinosaurs of the world. Simon and Schuster, New York.Google Scholar
Pobiner, B. L. 2006. Hominin-carnivore interactions: evidence from modern carnivore bone modification and early Pleistocene archeofaunas (Koobi Fora, Kenya; Olduvai Gorge, Tanzania). . Rutgers, the State University of New Jersey, New Brunswick.Google Scholar
Pobiner, B. L., and Blumenschine, R. J. 2003. A taphonomic perspective on Oldowan hominid encroachment on the carnivore paleoguild. Journal of Taphonomy 1:115141.Google Scholar
Prasad, G. V. R., and Lapparent de Broin, F. 2002. Late Cretaceous crocodile remains from Naskal (India): comparisons and biogeographic affinities. Annales de Paléontologie 88:1971.Google Scholar
Rayfield, E. J. 2004. Cranial mechanics and feeding in Tyrannosaurus rex . Proceedings of the Royal Society of London B 271:14511459.Google Scholar
Rayfield, E. J., Norman, D. B., Horner, C. C., Horner, J. R., Smith, P. M., Thomason, J. J., and Upchurch, P. 2001. Cranial design and function in a large theropod dinosaur. Nature 40:10331037.CrossRefGoogle Scholar
Rieppel, O. 1979. A functional interpretation of varanid dentition (Reptilia, Lacertilia, Varanidae). Gegenbaurs Morphologisches Jahrbuch, Leipzig 125:797817.Google Scholar
Rogers, R. R. 1990. Taphonomy of three dinosaur bone beds in the Upper Cretaceous Two Medicine Formation of northwestern Montana: evidence for drought-related mortality. Palaios 5:394413.Google Scholar
Rogers, R. R., Krause, D. W., and Rogers, K. C. 2003. Cannibalism in the Madagascan dinosaur Majungatholus atopus . Nature 422:515518.Google Scholar
Ryan, M. J., Russell, A. P., Eberth, D. E., and Currie, P. J. 2001. The taphonomy of a Centrosaurus (Ornithischia: Ceratopsidae) bone bed from the Dinosaur Park Formation (Upper Campanian), Alberta, Canada, with comments on cranial ontogeny. Palaios 16:482506.Google Scholar
Sankey, J. T., Brinkman, D. B., Guenther, M., and Currie, P. J. 2002. Small theropod and bird teeth from the Late Cretaceous (Late Campanian) Judith River Group, Alberta. Journal of Paleontology 76:751763.Google Scholar
Senter, P. E. 2003. New information on cranial and dental features of the Triassic archosauriform reptile Euparkeria capensis . Palaeontology 46:613621.Google Scholar
Sereno, P., and Novas, F. 1993. The skull and neck of the basal theropod Herrerasaurus ischigualastensis . Journal of Vertebrate Paleontology 13: 451–7.Google Scholar
Smith, J. B. 2005. Heterodonty in Tyrannosaurus rex: implications for the taxonomic and systematic utility of theropod dentitions. Journal of Vertebrate Paleontology 25:865887.Google Scholar
Smith, J. B. 2007. Dental morphology and variation in Majungasaurus crenatissimus (Theropoda: Abelisauridae) from the Late Cretaceous of Madagascar. Society of Vertebrate Paleontology Memoir 8:103128.Google Scholar
Smith, J. B., Vann, D. R., and Dodson, P. 2005. Dental morphology and variation in theropod dinosaurs: implications for the taxonomic identification of isolated teeth. Anatomical Record A 285:699736.Google Scholar
Smith, K. K. 1982. An electromyographic study of the function of the jaw adducting muscles in Varanus exanthematicus (Varanidae). Journal of Morphology 173:137158.Google Scholar
Smith, K. K., and Hylander, W. L. 1985. Strain gauge measurement of mesokinetic movement in the lizard Varanus exanthematicus . Journal of Experimental Biology 114:5370.Google Scholar
Snively, E., and Russell, A. P. 2007. Functional variation of neck muscles and their relation to feeding style in Tyrannosauridae and other large theropod dinosaurs. The Anatomical Record 290:934957.Google Scholar
Sweetman, S. C. 2004. The first record of velociraptorine dinosaurs (Saurischia, Theropoda) from the Wealden (Early Cretaceous, Barremian) of southern England. Cretaceous Research 25:353364.Google Scholar
Tanke, D. H., and Currie, P. J. 1995. Intraspecific fighting behavior inferred from toothmark trauma on skulls and teeth of large carnosaurs (Dinosauria). Journal of Vertebrate Paleontology 15(Suppl. to No. 3):55A.Google Scholar
Tanke, D. H., and Currie, P. J. 1998. Head-biting behavior in theropod dinosaurs: paleopathological evidence. Gaia 15:167184.Google Scholar
Varricchio, D. J. 1995. Taphonomy of Jack's Birthday Site, a diverse dinosaur bonebed from the Upper Cretaceous Two Medicine Formation of Montana. Palaeogeography, Palaeoclimatology, Palaeoecology 114:297311.Google Scholar
Van Valkenburgh, B., and Molnar, R. E. 2002. Dinosaurian and mammalian predators compared. Paleobiology 28:527543.2.0.CO;2>CrossRefGoogle Scholar