Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-09T14:51:40.482Z Has data issue: false hasContentIssue false

The living, the dead, and the expected dead: variation in life span yields little bias of proportional abundances in bivalve death assemblages

Published online by Cambridge University Press:  08 April 2016

Susan M. Kidwell
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637. E-mail: skidwell@uchicago.edu
Thomas A. Rothfus
Affiliation:
Department of Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637. E-mail: skidwell@uchicago.edu

Abstract

All else being equal, species with short life spans are expected to be overrepresented in time-averaged death assemblages relative to their standing abundance in the living community, but the magnitude of the distortion of proportional abundance and assemblage evenness has received little attention. Here, information from 30 data sets on the living and dead abundances of marine bivalves in local habitats is combined with a global compilation of bivalve life spans to determine whether bias from mortality rate can explain observed differences in species proportional abundances. Although bivalve maximum life spans range from one to 75 years in these data sets, indicating annual mortality rates of 0.97 to 0.09, the “life span bias” (LB) of a species–the difference between its proportional abundance expected dead and that observed alive–is consistently small in magnitude (average change <2%, maximum about 20%) and random in sign relative to observed discordance (OD = difference between that species' proportional abundance observed dead and that observed alive). The aggregate result for 413 living species occurrences is a significantly positive but weak correlation of OD to LB, with only 10% of variation in OD explained. The model performs better among longer-lived species than among shorter-lived species, probably because longer-lived species conform better to the model assumption that species maintain a constant proportional abundance in the living assemblage over time. Among individual data sets, only seven exhibit significant positive correlations between OD and LB. The model also under-predicts the cases where a death assemblage is dominated by a species that is shorter lived than the dominant species in the living assemblage, indicating that some factor(s) other than or in addition to mortality rate is responsible for OD. We can find no evidence of preservational bias linked to life span, for example through body size. This negative outcome reflects a weak biological relationship between life span and living abundance among bivalves in local habitats, contrary to the terrestrial paradigm, and points toward a simpler model of time-averaged death assemblage formation where higher abundances reflect (under-sampled) past populations. Contrary to long-held expectations, variation in population turnover among species is not a major source of taphonomic bias in time-averaged death assemblages among bivalves and perhaps among other marine groups: bias must arise largely from other factors.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Behrensmeyer, A. K., and Boaz, D. E. Dechant 1980. The Recent bones of Amboseli Park, Kenya, in relation to East African paleoecology. Pp. 7292 in Behrensmeyer, A. K. and Hill, A. P., eds. Fossils in the making. University of Chicago Press, Chicago.Google Scholar
Behrensmeyer, A. K., and Chapman, R. E. 1993. Models and simulations of taphonomic time-averaging in terrestrial vertebrate assemblages. In Kidwell, S. M. and Behrensmeyer, A. K., eds. Taphonomic approaches to time resolution in fossil assemblages. Short Courses in Paleontology 6:125149. Paleontological Society, Knoxville, Tenn. Google Scholar
Behrensmeyer, A. K., Western, D., and Boaz, D. E. Dechant 1979. New perspectives in vertebrate paleoecology from a Recent bone assemblage. Paleobiology 5:1221.Google Scholar
Behrensmeyer, A. K., Fürsich, F. T., Gastaldo, R. A., Kidwell, S. M., Kosnik, M. A., Kowalewski, M., Plotnick, R. E., Rogers, R. R., and Alroy, J. 2005. Are the most durable shelly taxa also the most common in the marine fossil record? Paleobiology 31:607623 Google Scholar
Beukema, J. J. 1989. Bias in estimates of maximum life span, with an example of the edible cockle, Cerastoderma edule . Netherlands Journal of Zoology 39:7985.Google Scholar
Beukema, J. J., and Meehan, B. W. 1985. Latitudinal variation in linear growth and other shell characteristics of Macoma balthica . Marine Biology 90:2733.Google Scholar
Blackburn, T. M., Lawton, J. H., and Gregory, R. D. 1996. Relationships between abundances and life histories of British birds. Journal of Animal Ecology 65:5262.Google Scholar
Bosence, D. W. J. 1979. Live and dead faunas from coralline algal gravels, Co. Galway, Eire. Palaeontology 22:449478.Google Scholar
Callender, W. R., and Powell, E. N. 1997. Autochthonous death assemblages from chemoautotrophic communities at petroleum seeps: palaeoproduction, energy flow, and implications for the fossil record. Historical Biology 12:165198 Google Scholar
Carthew, R., and Bosence, D. 1986. Community preservation in Recent shell-gravels, English Channel. Palaeontology 29:243268.Google Scholar
Comfort, A. 1957. The duration of life in Molluscs. Proceedings of the Malacological Society of London 32:219241.Google Scholar
Dekker, R., and Beukema, J. J. 1993. Dynamics and growth of a bivalve, Abra tenuis, at the northern edge of its distribution. Journal of the Marine Biological Association of the United Kingdom 73:497511.Google Scholar
Ekdale, A. A. 1972. Ecology and paleoecology of marine invertebrate communities in calcareous substrates, northeast Quintana Roo, Mexico. . Rice University, Houston.Google Scholar
Ekdale, A. A. 1977. Quantitative paleoecological aspects of modern marine mollusk distribution, northeast Yucatan coast, Mexico. In Frost, S. H., Weiss, M. P., and Saunders, J. B., eds. Reefs and related carbonates: ecology and sedimentology. American Association of Petroleum Geologists, Studies in Geology 4:195207. Tulsa, Okla.Google Scholar
Fiori, S., and Defeo, O. 2006. Biogeographic patterns in life-history traits of the yellow clam, Mesodesma mactroides, in sandy beaches of South America. Journal of Coastal Research 22:872880.Google Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.Google Scholar
Fürsich, F. T., and Aberhan, M. 1990. Significance of time-averaging for paleocommunity analysis. Lethaia 23:143152.Google Scholar
Garcia-Cubas, A., Reguero, M., and Elizarraras, R. 1992. Moluscos del sistema lagunar Chica-Grande, Veracruz, Mexico: sistemática y ecología. Anales del Instituto de Ciencias del Mar y Limnología, Universidad nacional Autónoma de Mexico 19(1):1121.Google Scholar
Gray, J. S., and Elliott, M. 2009. Ecology of marine sediments, from science to management, 2d ed. Oxford University Press, Oxford.Google Scholar
Harrington, R. J. 1987. Skeletal growth histories of Protothaca staminea (Conrad) and Protothaca grata (Say) throughout their geographic ranges, Northeastern Pacific. Veliger 30:148158.Google Scholar
Heller, J. 1990. Longevity in molluscs. Malacologia 31:259295.Google Scholar
Hoenig, J. M. 1983. Empirical use of longevity data to estimate mortality rates. U. S. Fish and Wildlife Service Fisheries Bulletin 81:898903.Google Scholar
Hurlbert, S. H. 1971. The nonconcept of species diversity: a critique and alternative parameters. Ecology 52:577586.Google Scholar
Jackson, J. B. C. 1968. Neontological and paleontological study of the autecology and synecology of the molluscan fauna of Fleets Bay, Virginia . George Washington University, Washington, D.C., 111p.Google Scholar
Johnson, R. G. 1965. Pelecypod death assemblages in Tomales Bay, California. Journal of Paleontology 39:8085 Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:10911094.Google Scholar
Kidwell, S. M. 2002. Time-averaged molluscan death assemblages: palimpsests of richness, snapshots of abundance. Geology 30:803806.Google Scholar
Kidwell, S. M. 2007. Discordance between living and death assemblages as evidence for anthropogenic ecological change. Proceedings of the National Academy of Sciences U.S.A. 104:1770117706.Google Scholar
Kidwell, S. M., Best, M. M. R., and Kaufman, D. 2005. Taphonomic tradeoffs in tropical marine death assemblages: Differential time-averaging, shell loss, and probable bias in siliciclastic versus carbonate facies. Geology 33:729732.Google Scholar
Kosnik, M. 2009. Beyond similarity: examining live-dead agreement by modeling death assemblage formation using live-collected specimens. Geological Society of America Abstracts with Programs 41(7):33.Google Scholar
Kosnik, M., Hua, Q., Jacobsen, G., Kaufman, D. S., and Wüst, R. A. 2007. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment. Geology 35:811814.Google Scholar
Kaufman, D. S. 2009. Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment. Paleobiology 35:565586.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. High-resolution estimates of temporal mixing within shell beds: The evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Kowalewski, M., Carroll, M., Casazza, L., Gupta, N., Hannisdal, B., Hendy, A., Krause, R. A. Jr., LaBarbera, M., Lazo, D. G., Messina, C., Puchalski, S., Rothfus, T. A., Sälgeback, J., Stempien, J., Terry, R. C., and Tomašových, A. 2003. Quantitative fidelity of brachiopod-mollusk assemblages from modern subtidal environments of San Juan Islands, USA. Journal of Taphonomy 1:4365.Google Scholar
Krause, R. A. Jr., Wood, S. L. Barbour, Kowalewski, M., Kaufman, D. S., Romanek, C. S., Simões, M. G., and Wehmiller, J. F. 2009. Quantitative estimates and modeling of time-averaging in bivalve and brachiopod shell accumulations. Paleobiology 36:428452.Google Scholar
Lawton, J. H. 1988. More time means more variation. Nature 334:563.CrossRefGoogle Scholar
Levinton, J. S. 1970. The paleoecological significance of opportunistic species. Lethaia 3:6978.Google Scholar
Levinton, J. S., and Bambach, R. K. 1969. Some ecological aspects of bivalve mortality patterns. American Journal of Science 268:97112.Google Scholar
MarLIN BIOTIC (Marine Life Information Network, Biological Traits Information Catalogue) www.marlin.ac.uk/biotic/ (accessed September 2008) Google Scholar
Meldahl, K. E., Flessa, K. W., and Cutler, A. H. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: Quantitative comparisons among Holocene environments. Paleobiology 23:207229.Google Scholar
Metaxatos, A. 2004. Population dynamics of the venerid bivalve Callista chione (L.) in a coastal area of the eastern Mediterranean. Journal of Sea Research 52:293305.Google Scholar
MSAP (Marine Species with Aquaculture Potential) http://hmsc.oregonstate.edu/projects/msap/index.html (accessed September 2008) Google Scholar
Olszewski, T. 1999. Taking advantage of time-averaging. Paleobiology 25:226238.Google Scholar
Olszewski, T. D., and Kidwell, S. M. 2007. The preservational fidelity of evenness in molluscan death assemblages. Paleobiology 33:123.Google Scholar
Peterson, C. H. 1972. Species diversity, disturbance and time in the bivalve communities of some California lagoons. Ph.D. dissertation. University of California, Santa Barbara.Google Scholar
Peterson, C. H. 1976. Relative abundance of living and dead molluscs in two California lagoons. Lethaia 9:137148.Google Scholar
Powell, E. N., and Cummins, H. 1985. Are molluscan maximum life spans determined by long-term cycles in benthic communities? Oecologia 67:177182.Google Scholar
Powell, E. N., and Stanton, R. J. Jr. 1985. Estimating biomass and energy flow of molluscs in palaeo-communities. Palaeontology 28:134.Google Scholar
Powell, E. N., Staff, G. M., Stanton, R. J. Jr., and Callender, W. R. 2001. Application of trophic transfer efficiency and age structure in the trophic analysis of fossil assemblages. Lethaia 34:97118.Google Scholar
R Development Core Team. 2005. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Regeuero, M., and Garcia-Cubas, A. 1989. Moluscos de la Laguna de Alvarado, Veracruz: sistemática y ecología. Anales del Instituto de Ciencias del Mar y Limnologia, Universidad nacional Autónoma de Mexico 16(2):279306.Google Scholar
Regeuero, M., and Garcia-Cubas, A. 1991. Moluscos de la Laguna Camaronera, Veracruz, Mexico: sistemática y ecología. Anales del Instituto de Ciencias del Mar y Limnologia, Universidad nacional Autónoma de Mexico 18(1):123.Google Scholar
Regeuero, M., and Garcia-Cubas, A. 1993. Moluscos de la Laguna Pueblo Viejo, Veracruz, Mexico: sistemática y ecología. Anales del Instituto de Ciencias del Mar y Limnologia, Universidad nacional Autónoma de Mexico 20(1):77104.Google Scholar
Riascos, J. M., Heilmayer, O., and Laudien, J. 2008. Population dynamics of the tropical bivalve Cardita affinis from Malaga Bay, Colombian Pacific related to La Nina 1999–2000. Helgoland Marine Research 62(Supp. 1):S63S71.Google Scholar
Robertson, A. I. 1979. The relationship between annual production:biomass ratios and life spans for marine macrobenthos. Oecologia 38:193202.Google Scholar
Rothfus, T. A., and Kidwell, S. M. 2006. The live, the dead, and the expected dead: mortality bias in bivalve death assemblages. Geological Society of America Abstracts with Programs 38(7):441.Google Scholar
Smith, E. J. 1985. Paleoecologic aspects of modern macroinvertebrate communities of southern Laguna Madre, Texas. . Stephen F. Austin State University, Nacogdoches, Texas.Google Scholar
Staff, G. M., and Powell, E. N. 1999. Onshore-offshore trends in community structural attributes: death assemblages from the shallow continental shelf of Texas. Continental Shelf Research 19:717756.Google Scholar
Tomašových, A. 2004. Postmortem durability and population dynamics affecting the fidelity of size-frequency distributions. Palaios 19:477496.Google Scholar
Tomašových, A., and Kidwell, S. M. 2009. Predicting the effects of increasing temporal scale on species composition, diversity, and rank-abundance distributions. Paleobiology 36 [this issue].Google Scholar
Van Valen, L. 1964. Relative abundance of species in some fossil mammal faunas. American Naturalist 98:109116.Google Scholar
Vermeij, G. J., and Herbert, G. S. 2004. Measuring relative abundance in fossil and living assemblages. Paleobiology 30:14.Google Scholar
Walker, R. L., and Heffernan, P. B. 1994. Age, growth rate, and size of the southern surfclam, Spisula solidissima simils (Say, 1822). Journal of Shellfisheries Research 13:433441.Google Scholar
Weber, A., Witbaard, R., and van Steenpaal, S. 2001. Patterns of growth and undetectable growth lines of Astarte sulcata (Bivalvia) in the Faroe-Shetland Channel. Senckenbergiana maritima 31:235244.Google Scholar
Western, D., and Behrensmeyer, A. K. 2009. Bone assemblages track animal community structure over 40 years in an African savanna ecosystem. Science 324(5930):10611064.Google Scholar
White, E. P., Ernest, S. K., Kerkoff, A. J., and Enquist, B. J. 2007. Relationships between body size and abundance in ecology. Trends in Ecology and Evolution 22:323330.Google Scholar
White, W. A., Calnan, T. R., Morton, R. A., Kimble, R. S., Littleton, T. G., McGowen, J. H., and Nance, H. S. 1983. Submerged lands of Texas, Corpus Christi area: sediments, geochemistry, benthic macroinvertebrates, and associated wetlands. Bureau of Economic Geology, University of Texas, Austin.Google Scholar
White, W. A., Calnan, T. R., Morton, R. A., Kimble, R. S., Littleton, T. G., McGowen, J. H., Nance, H. S., and Schmedes, K. E. 1985. Submerged lands of Texas, Galveston-Houston area: sediments, geochemistry, benthic macroinvertebrates, and associated wetlands. Bureau of Economic Geology, University of Texas, Austin.Google Scholar
Zenetos, A., and Van Aartsen, J. J. 1994 (1995). The deep sea molluscan fauna of the S.E. Aegean Sea and its relation to the neighbouring fauna. Bollettino Malacologico 30:253268.Google Scholar
Zolotarev, V. N. 1980. The life span of bivalves from the Sea of Japan and Sea of Okjotsk. Biologiya Morya (Soviet Journal of Marine Biology) 6:312. Translation 1981 by Plenum Publishing.Google Scholar
Supplementary material: PDF

Kidwell and Rothfus supplementary material

Supplementary Material

Download Kidwell and Rothfus supplementary material(PDF)
PDF 786.2 KB