Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-09T19:31:24.607Z Has data issue: false hasContentIssue false

Paedomorphosis and the origin of the Paleogene planktonic foraminiferal genus Morozovella

Published online by Cambridge University Press:  14 July 2015

D. Clay Kelly
Affiliation:
Department of Geology, Florida State University, Tallahassee, Florida 32306
Anthony J. Arnold
Affiliation:
Department of Geology, Florida State University, Tallahassee, Florida 32306
William C. Parker
Affiliation:
Department of Geology, Florida State University, Tallahassee, Florida 32306

Abstract

The evolutionary origin of Morozovella angulata from its immediate ancestor, Praemurica uncinata, is preserved in Paleocene sediments from the Gulf of Mexico. This event represents the beginning of the morozovellid radiation and marks the first appearance of keeled planktonic foraminifera after the Cretaceous/Tertiary extinction. Parallel biometric and isotopic analyses were performed on size-segregated specimens from a succession of stratigraphic horizons. The biometric data reveal a temporal pattern of variation consistent with paedomorphosis. The appearance of angulose juvenile chambers in the otherwise rounded ancestral form (Praemurica uncinata) results in an allometry that becomes more pronounced upsection. At the origin of M. angulata, the juvenile morphology of the ancestor is retained throughout the entire ontogeny. Isotopic analysis of this sequence reveals the gradual acquisition of an increasingly heavy adult δ13C signal relative to that of the juvenile, while the δ18O data display no temporal or size-related trends. The temporal increase seen in the slope of the δ13C/size relationship may reflect the evolution of an increased dependency on photosymbionts.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alberch, P., Gould, S. J., Oster, G. F., and Wake, D. B. 1979. Size and shape in ontogeny and phylogeny. Paleobiology 5:296317.CrossRefGoogle Scholar
Arkell, W. J., Kummel, B., and Wright, C. W. 1957. Mesozoic Ammonoidea. Pp. L80L465In Arkell, W. J., Furnish, W. M., Kummel, B., Miller, A. K., Moore, R. C., Schindewolf, C. H., Sylvester-Bradley, P. C., and Wright, C. W., eds. Mollusca 4, Cephalopoda, Ammonoidea. Part L of Moore, R. C., ed. Treatise on invertebrate paleontology. Geological Society of America and University of Kansas Press, Lawrence, Kans.Google Scholar
Arnold, A. J. 1983. Phyletic evolution in Globorotalia crassaformis (Galloway and Wissler) lineage: a preliminary report. Paleobiology 9:390397.CrossRefGoogle Scholar
Arnold, A. J., Kelly, D. C., and Parker, W. 1992. Macro- and microevolutionary aspects of the early Paleogene recovery of the planktonic foraminifera. Fifth North American Paleontological Conference. Paleontological Society Special Publication No. 6, Abstracts and Programs.CrossRefGoogle Scholar
Arnold, A. J., Kelly, D. C., and Parker, W. 1995. Causality and Cope's Rule: evidence from the planktonic foraminifera. Journal of Paleontology 69:203210.CrossRefGoogle Scholar
Berger, W. H., Killingley, J. S., and Vincent, E. 1978. Stable isotopes in deep-sea carbonates: Box Core ERDC-92, west equatorial Pacific. Oceanological Acta 1:203216.Google Scholar
Berggren, W. A. 1965. Some problems of Paleocene–lower Eocene planktonic foraminiferal correlations. Micropaleontology 11:278300.CrossRefGoogle Scholar
Berggren, W. A. 1968. Phylogenetic and taxonomic problems of some Tertiary planktonic foraminiferal lineages. Tulane Studies in Geology 6:122.Google Scholar
Berggren, W. A. 1969. Rates of evolution in some Cenozoic planktonic foraminifera. Micropaleontology 15:351365.CrossRefGoogle Scholar
Berggren, W. A., and Miller, K. G. 1988. Paleogene tropical planktonic foraminiferal biostratigraphy and magnetobiochronology. Micropaleontology 34:362380.CrossRefGoogle Scholar
Blow, W. H. 1979. The Cainozoic Globigerinida. Brill, Leiden, Netherlands.CrossRefGoogle Scholar
Bolli, H. M. 1957. The genera Globigerina and Globorotalia in the Paleocene–lower Eocene Lizard Springs Formation of Trinidad, B. W. I. Pp. 6181in Loeblich, A. B., ed. Studies in foraminifera. United States National Museum Bulletin 215. McLean Paleontological Laboratory, Alexandria, Va.Google Scholar
Boersma, A., Premoli-Silva, I., and Shackleton, N. J. 1987. Atlantic Eocene planktonic foraminiferal paleohydrographic indicators and stable isotope paleoceanography. Paleoceanography 2:287331.CrossRefGoogle Scholar
Brummer, G. J. A., Hemleben, C., and Spindler, M. 1987. Ontogeny of extant spinose planktonic foraminifera (Globigerinidae): a concept exemplified by Globigerinoides sacculifer (Brady) and G. ruber (d'Orbigny). Marine Micropaleontology 12:357381.CrossRefGoogle Scholar
Cifelli, R. 1969. Radiation of Cenozoic planktonic foraminifera. Systematic Zoology 18:154168.CrossRefGoogle Scholar
Corfield, R. M. 1987. Patterns of evolution in Palaeocene and Eocene planktonic foraminifera. pp. 93110in Hart, M. B., ed. Micropalaeontology of carbonate environments. British Micropalaeontological Society Series, Ellis Horwood.Google Scholar
Corfield, R. M., and Cartlidge, J. E. 1991. Isotopic evidence for the depth stratification of fossil and Recent Globigerinina: a review. Historical Biology 5:3763.CrossRefGoogle Scholar
Corfield, R. M., and Granlund, A. H. 1988. Speciation and structural evolution in the Palaeocene Morozovella lineage (planktonic Foraminiferida). Journal of Micropalaeontology 7:5972.CrossRefGoogle Scholar
Corfield, R. M., and Shackleton, N. J. 1988. Danian faunal succession: planktonic foraminiferal response to a changing marine environment. Geology 16:378380.2.3.CO;2>CrossRefGoogle Scholar
D'Hondt, S., Zachos, J. C., and Schultz, G. 1994. Stable isotopic signals and photosymbiosis in late Paleocene planktic foraminifera. Paleobiology 20:391406.CrossRefGoogle Scholar
Garstang, W. 1929. The origin and evolution of larval forms. British Association for the Advancement of Science Report 192:7798.Google Scholar
Gould, S. J. 1977. Ontogeny and phylogeny. Belknap, Cambridge, Mass.Google Scholar
Hallock, P. 1985. Why are larger foraminifera large? Paleobiology 11:195208.CrossRefGoogle Scholar
Hallock, P., Premoli-Silva, I., and Boersma, A. 1991. Similarities between planktonic and larger foraminiferal evolutionary trends through Paleogene paleoceanographic changes. Palaeogeography, Palaeoclimatology, Palaeoecology 83:4964.CrossRefGoogle Scholar
Hemleben, C., Spindler, M., and Anderson, O. R. 1989. Modern planktonic foraminifera. Springer, New York.CrossRefGoogle Scholar
Jennrich, R., and Sampson, P. 1990. Stepwise discriminant analysis. pp. 339358in Dixon, W. J., ed. BMDP statistical software manual, Vol. 1. University of California Press, Berkeley and Los Angeles.Google Scholar
Kelly, D. C., Arnold, A. J., and Parker, W. C. 1993. Paedomorphosis in the evolution of Morozovella angulata. Geological Society of America. Abstracts with Programs 25:A1.Google Scholar
Lohmann, G. P. 1995. A model for variation in the chemistry of planktonic foraminifera due to secondary calcification and selective dissolution. Paleoceanography 10:445457.CrossRefGoogle Scholar
Luterbacher, H. 1964. Studies of some Globorotalia from the Paleocene and lower Eocene of the Central Apennines. Eclogae Geologicae Helvetiae 57:631730.Google Scholar
Martin, R. G. 1972. Structural Features of the Continental Margin, Northeastern Gulf of Mexico. U.S. Geological Survey Professional Paper 800:B1B8.Google Scholar
Martini, E. 1971. Standard Tertiary and Quaternary calcareous nannoplankton zonation. pp. 739777in Farinacci, A., ed. Proceedings of the Second Plankton Conference, Vol. 2.Google Scholar
McKinney, M. L., and McNamara, K. J. 1991. Heterochrony: the evolution of ontogeny. Plenum, New York.CrossRefGoogle Scholar
Morozova, V. G. 1957. Foraminiferal superfamily Globigerinidea, superfamily nov., and some of its representatives. Akademia Nauk SSSR, Doklady, Moscow, 114:1111. [In Russian.]Google Scholar
Olsson, R. K., Hemleben, C., Berggren, W. A., and Liu, C. 1992. Wall texture classification of planktonic foraminifera genera in the lower Danian. Journal of Foraminiferal Research 22:195213.CrossRefGoogle Scholar
Pavlow, A. P. 1901. Le Cretace inferieur de la Russie et sa faune. Nouvelle Memoires de la Societe Imperiale des Naturalistes de Moscou 21 (series nouvelle, livre 16).Google Scholar
Raup, D. M. 1966. Geometric analysis of shell coiling: general problems. Journal of Paleontology 40:11781190.Google Scholar
Rensch, B. 1959. Evolution above the species level. Columbia University Press, New York.CrossRefGoogle Scholar
Schindewolf, O. H. 1925. Entwurf einer Systematik der Perisphincten. Neues Jahrbuch für Mineralogie. Beilage 52B:309343.Google Scholar
Schindewolf, O. H. 1936. Paläontologie, Entwicklungslehre und Genetik. Kritik und Synthese. Berlin.Google Scholar
Shackleton, N. J., Corfield, R. M., and Hall, M. A. 1985. Stable isotope data and the ontogeny of Paleocene planktonic foraminifera. Journal of Foraminiferal Research 15:321336.CrossRefGoogle Scholar
Spero, H. J., and Lea, D. W. 1993. Intraspecific stable isotope variability in the planktic foraminifera Globigerinoides sacculifer: results from laboratory experiments. Marine Micropaleontology 22:221234.CrossRefGoogle Scholar
Spero, H. J., Lerche, I., and Williams, D. F. 1991. Opening the carbon isotope “Vital Effect” black box, 2, quantitative model for interpreting foraminiferal carbon isotope data. Paleoceanography 6:639655.CrossRefGoogle Scholar
Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H., and Jeffords, R. M. 1975. Cenozoic planktonic foraminiferal zonation and characteristics of index forms. University of Kansas Paleontological Institute, Article 62. University of Kansas Press, Lawrence, Kans.Google Scholar
Toumarkine, M., and Luterbacher, H. 1985. Paleocene and Eocene planktic foraminifera. pp. 87154In Bolli, H. M., Saunders, J. B., and Perch-Nielsen, K., eds. Plankton stratigraphy. Cambridge. University Press, Cambridge.Google Scholar
Wei, K. Y., Zhang, Z. W., and Wray, C. 1992. Shell ontogeny of Globorotalia inflata (I): growth dynamics and ontogenetic stages. Journal of Foraminiferal Research 22:318327.CrossRefGoogle Scholar