Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-27T07:34:32.744Z Has data issue: false hasContentIssue false

Spiral growth in Nephrolepidina: evidence of “golden selection”

Published online by Cambridge University Press:  08 April 2016

Andrea Benedetti*
Affiliation:
Dipartimento di Scienze della Terra, University of Rome “La Sapienza,” Piazzale A. Moro, 5, I-00185, Rome, Italy. E-mail: andrea.benedetti@uniroma1.it. GIRMM: Informal Group of Micropaleontological and Malacological Researches, www.girmm.com

Abstract

Examination of the neanic apparatuses of known populations of Nephrolepidina praemarginata, N. morgani, and N. tournoueri reveals that the equatorial chamberlets are arranged in spirals, along the direction of connection of the oblique stolons, giving the optical effect of intersecting curves. In N. praemarginata commonly 34 left- and right-oriented primary spirals occur from the first annulus to the periphery, 21 secondary spirals from the third to fifth annulus, 13 ternary spirals from the fifth to eighth annulus, following the Fibonacci sequence.

The number of the spirals increases in larger specimens and in more embracing morphotypes, and especially in trybliolepidine specimens; the secondary and ternary spirals from the investigated N. praemarginata to N. tournoueri populations tend to start from more distal annuli. An interpretative model of the spiral growth of Nephrolepidina is attempted.

The angle formed by the basal annular stolon and distal oblique stolon in equatorial chamberlets ranges from 122° in N. praemarginata to mean values close to the golden angle (137.5°) in N. tournoueri.

The increase in the Fibonacci number of spirals during the evolution of the lineage, along with the disposition of the stolons between contiguous equatorial chamberlets, provides new evidence of evolutionary selection for specimens with optimally packed chamberlets.

Natural selection favors individuals with the most regular growth, which fills the equatorial space more efficiently, thus allowing these individuals to reach the adult stage faster. We refer to this new type of selection as “golden selection.”

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, C. G. 1987. On the classification of the Lepidocyclinidae (Foraminiferida) with redescriptions of the unrelated Paleocene genera Actinosiphon and Orbitosiphon. Micropaleontology 33:289317.CrossRefGoogle Scholar
Benedetti, A. 2010. Biostratigraphic remarks on the Caltavuturo Formation cropping out at Portella Colla (Madonie Mts., Sicily). Revue de Paléobiologie 29:197216.Google Scholar
Benedetti, A., and Briguglio, A. 2012. Risananeiza crassaparies n. sp. from the Late Chattian of Porto Badisco (southern Apulia). Bollettino della Società Paleontologica Italiana 51:167176.Google Scholar
Benedetti, A., and D'Amico, C. 2012. Benthic foraminifers and gastropods from the Gratteri Formation cropping out near Isnello (Madonie Mts., Sicily). Italian Journal of Geosciences 131:6676.Google Scholar
Benedetti, A., and Pignatti, J. 2013. Conflicting evolutionary and biostratigraphical trends in Nephrolepidina praemarginata (Douvillé, 1908) (Foraminiferida). Historical Biology 25:363383.Google Scholar
Briguglio, A., and Benedetti, A. 2012. X-ray microtomography as a tool to present and discuss new taxa: the example of Risananeiza sp. from the late Chattian of Porto Badisco. Rendiconti Online Società Geologica Italiana 21:10721074.Google Scholar
Briguglio, A., Metscher, B., and Hohenegger, J. 2011. Growth rate biometric quantification by X-ray microtomography on larger benthic foraminifera: three-dimensional measurements push nummulitids into the fourth dimension. Turkish Journal of Earth Science 20:683699.Google Scholar
Chaproniere, G. C. H. 1980. Biometrical studies of Early Neogene larger Foraminiferida from Australia and New Zealand. Alcheringa 4:155181.Google Scholar
Cooke, T. J. 2006. Do Fibonacci numbers reveal the involvement of geometrical imperatives or biological interactions in phyllotaxis? Botanical Journal of the Linnean Society 150:324.Google Scholar
De Mulder, E. F. J. 1975. Microfauna and sedimentary-tectonic history of the Oligo-Miocene of the Jonian Islands and western Epirus (Greece). Utrecht Micropaleontological Bulletins 13:1140.Google Scholar
Douvillé, R. 1908. Observations sur les faunes à Foraminifères du sommet du Nummulitique italien. Bulletin de la Société Géologique de France, série 4, 8:8895.Google Scholar
Drooger, C. W. 1993. Radial foraminifera; morphometrics and evolution. Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen, Afdeeling Natuurkunde 41:1242.Google Scholar
Drooger, C. W., and Rohling, E. J. 1988. Lepidocyclina migration across the Atlantic. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen B 91:3952.Google Scholar
Dunlap, R. A. 1997. The golden ratio and Fibonacci numbers. World Scientific, Hackensack, N.J.Google Scholar
Eames, F. E., Banner, F. T., Blow, W. H., Clarke, W. J., and Smout, A. H. 1962. Morphology, taxonomy, and stratigraphic occurrence of the Lepidocyclininae. Micropaleontology 8:289322.Google Scholar
Giovagnoli, M. C., and Schiavinotto, F. 1990. Nephrolepidina tournoueri (Lemoine & R. Douvillé) from the lower Miocene of Ales (Sardinia). Bollettino della Società Paleontologica Italiana 29:233244Google Scholar
Hohenegger, J. 2011. Large foraminifera: greenhouse constructions and gardeners in the oceanic microcosm. Kagoshima University Museum, Kagoshima, Japan.Google Scholar
Hottinger, L. 1974. Alveolinids, Cretaceous-Tertiary larger foraminifera. Esso Production Research-European Laboratories, Bade, Switzerland.Google Scholar
Hottinger, L. 1977. Foraminifères operculiniformes. Mémoires du Museum National d'Histoire Naturelle, Paris, new series, C 40:1159.Google Scholar
Hottinger, L. 2006. Illustrated glossary of terms used in foraminiferal research. Carnets de Géologie / Notebooks on Geology, Memoir 2006/02. http://paleopolis.rediris.es/cg/CG2006_M02.Google Scholar
Hotton, S., Johnson, V., Wilbarger, J., Zwieniecki, K., Atela, P., Golé, C., and Dumais, J. 2006. The possible and the actual in phyllotaxis: Bridging the gap between empirical observations and iterative models. Journal of Plant Growth Regulation 25:313323.Google Scholar
Jean, R. V. 1988. Model of pattern generation on plants based on the principle of minimal entropy production. Pp. 249264inLamprecht, I. and Zotin, A. I., eds. Thermodynamics and pattern formation in biology. De Gruyter, Berlin.Google Scholar
Lemoine, P., and Douvillé, R. 1904. Sur le genre Lepidocyclina Gümbel. Mémoire de la Société Géologique de France 12:141.Google Scholar
Less, G. 1987. Paleontology and stratigraphy of the European Orthophragminae. Geologica Hungarica 51:1373.Google Scholar
Levitov, L. S. 1991. Fibonacci numbers in botany and physics: phyllotaxis. JETP Letters 54:546550.Google Scholar
Matsumaru, K. 1971. Studies on the genus Nephrolepidina in Japan. The Science Reports of the Tohoku University. Sendai, Japan, second series (Geology) 42:97185.Google Scholar
Matteucci, R., and Schiavinotto, F. 1978. Studio biometrico di Nephrolepidina, Eulepidina e Cycloclypeus in due campioni dell'Oligocene di Monte La Rocca, L'Aquila (Italia centrale). Geologica Romana 16 (1977):141171.Google Scholar
Okabe, T. 2011. Physical phenomenology of phyllotaxis. Journal of Theoretical Biology 280:6375.Google Scholar
Okabe, T. 2012. Systematic variations in divergence angle. Journal of Theoretical Biology 313:2041.CrossRefGoogle ScholarPubMed
Özcan, E., Less, G., Báldi-Beke, M., Kollányi, K., and Acar, F. 2009. Oligo-Miocene foraminiferal record (Miogypsinidae, Lepidocyclinidae and Nummulitidae) from the Western Taurides (SW Turkey): biometry and implications for the regional geology. Journal of Asian Earth Sciences 34:740760.Google Scholar
Özcan, E., Less, G., Báldi-Beke, M., and Kollányi, K. 2010. Oligocene hyaline larger foraminifera from Kelereşdere Section (Mûs, Eastern Turkey). Micropaleontology 56:465493.Google Scholar
Pignatti, J. 1998. Paleogene shallow benthos of the Tethys: Paleogene larger foraminifera reference list. Pp. 1298inDrobne, K. and Hottinger, L., eds. Paleogene shallow benthos of the Tethys. Dela-Opera Sazu 4. Slovenian Academy of Sciences and Art, Ljubljana.Google Scholar
Rivier, N., Occelli, R., Pantaloni, J., and Lissowski, A. 1984. Structure of Bénard convection cells, phyllotaxis and crystallography in cylindrical symmetry. Journal of Physics 45:4963.Google Scholar
Schaub, H. 1981. Nummulites et Assilines de la Téthys paléogène. Taxinomie, phylogénese et biostratigraphie. Schweizerische Paläontologische Abhandlungen 104:1236.Google Scholar
Schiavinotto, F. 1978. Nephrolepidina nella Valle del Maso (Borgo Valsugana – Italia settentrionale). Rivista Italiana di Paleontologia e Stratigrafia 84:729750.Google Scholar
Schiavinotto, F. 1979. Miogypsina e Lepidocyclina del Miocene di Monte La Serra (L'Aquila – Appennino centrale). Geologica Romana 18:253293.Google Scholar
Schiavinotto, F. 1992. The neanic stage of Nephrolepidina tournoueri: biometry and biostratigraphic implications. Bollettino della Società Paleontologica Italiana 31:189206.Google Scholar
Schiavinotto, F. 1994a. Biometry of the neanic stage of Upper Chattian Nephrolepidina morgani (Lemoine & R. Douvillé). Geologica Romana 29 (1993):291306.Google Scholar
Schiavinotto, F. 1994b. Neanic stage biometry in Nephrolepidina praemarginata, (R. Douvillé, 1908). Bollettino della Società Geologica Italiana 112 (1993):805824.Google Scholar
Schiavinotto, F. 2010. Neanic stage biometry in Nephrolepidina from the Upper Oligocene of Lonedo (Lugo di Vicenza – Northern Italy). Bollettino della Società Paleontologica Italiana 49:173194.Google Scholar
Signes, M., Bijma, J., Hemblen, C., and Ott, R. 1993. A model for planktic foraminiferal shell growth. Paleobiology 19:7191.Google Scholar
Hok, Tan Sin, 1932. On the genus Cycloclypeus Carpenter. Part I, and an appendix on the Heterostegines of Tjimanggoe, S. Bantam, Java. Wetenschappelijke Mededeelingen, Dutch East Indies Dienst van den Mijnbouw 19:1194.Google Scholar
Thompson, D'A. W. [1919] 1992. On growth and form, the complete revised edition. Dover, New York.Google Scholar
van Iterson, G. 1907. Mathematische und mikroskopisch-anatomische Studien über Blattstellungen nebst Betrachtungen über den Schalenbau der Miliolinen. (S.l.). Fischer, Jena.Google Scholar
van Vessem, E. J. 1978. Study of Lepidocyclinidae from South East Asia, particularly from Java and Borneo. Utrecht Micropaleontological Bulletins 19:1163.Google Scholar
Wojnar, R. 2005. Structural control in tissue development. Journal of Theoretical and Applied Mechanics 43:805812.Google Scholar