Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-10-31T01:18:43.490Z Has data issue: false hasContentIssue false

Stable isotopic evidence for fossil food webs in Eocene Lake Messel

Published online by Cambridge University Press:  08 April 2016

Maia K. Schweizer
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015. E-mail: maias@earth.ox.ac.uk
Andrew Steele
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015. E-mail: maias@earth.ox.ac.uk
Jan K. W. Toporski
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015. E-mail: maias@earth.ox.ac.uk
Marilyn L. Fogel
Affiliation:
Geophysical Laboratory, Carnegie Institution of Washington, Washington, D.C. 20015. E-mail: maias@earth.ox.ac.uk

Abstract

Carbon and nitrogen stable isotopic compositions of fossil materials from Lake Messel (47 Ma) in Germany are used to investigate Eocene ecosystem dynamics. Autolithified soft tissues of terrestrial and aquatic vertebrate organisms, as well as plant compression fossils, contain organic material (20–50 wt% C, 1–6 wt% N), which appears to retain precursor compositions. Stable isotopic compositions (δ13C and δ15N) of Messel fossils are similar to those reported for components in modern lacustrine ecosystems. These data show trophically sensible enrichments relative to food sources, reflect multiple feeding strategies for each organism (e.g., omnivory, planctivory, piscivory), and differentiate between benthic and pelagic organic carbon sources. These chemical data broadly confirm existing Messel food web models based on coprolite and gut content analyses. δ13C values for the lacustrine shale range from −30.3 to −26.3‰, pointing to mixed terrestrial and aquatic origins for primary producers in the food web. δ13C values for primary consumers such as insects overlap with those for primary producers but are comparatively enriched in 15N. Secondary and higher consumers (fish, crocodiles, and frogs) are associated with even more positive δ15N values and show a more constrained range of δ13C values. Omnivory appears widespread in both low and high trophic level consumers. Hence, the stable isotopic compositions of Messel fossils are complex and overlap, and must be combined with paleontological investigations in order to be conclusive. This study represents the first comprehensive isotopic reconstruction, featuring tens of components, of an ecosystem of Eocene age. A thorough understanding of trophic structure in Eocene Lake Messel contributes to the global databank of ecological history.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, T. S., and Sterner, R. W. 2000. The effect of dietary nitrogen content on trophic level 15N enrichment. Limnology and Oceanography 45: 601607.CrossRefGoogle Scholar
Andreasson, F. P., and Schmitz, B. 1996. Winter and summer temperatures of the early middle Eocene of France from Turritella d18O profiles. Geology 24: 10671070.2.3.CO;2>CrossRefGoogle Scholar
Andreasson, F. P., and Schmitz, B. 2000. Temperature seasonality in the early middle Eocene North Atlantic region: evidence from stable isotope profiles of marine gastropod shells. Geological Society of America Bulletin 112: 628640.2.0.CO;2>CrossRefGoogle Scholar
Barton, D. G., and Wilson, M. V. 1999. Microstratigraphic study of meristic variation in an Eocene fish from a 10000-year varved interval at Horsefly, British Columbia. Canadian Journal of Earth Sciences 36: 20592072.CrossRefGoogle Scholar
Baszio, S., and Richter, G. 2001. First proof of planctivory/insectivory in a fossil fish: Thaumaturus intermedius from the Eocene Lake Messel (FRG). Palaeogeography, Palaeoclimatology, Palaeoecology 173: 7585.Google Scholar
Berg, D. E. 1966. Die Krokodile, insbesondere Asiatosuchus und aff. Sebecus? aus den Eozän von Messel bei Darmstadt/Hessen. Abhandlungen des Hessischen Landesamt Bodenforschung 52: 1105.Google Scholar
Blair, N., Leu, A., Nunoz, E., Olsen, J., Kwong, E., and Des-Marais, D. 1985. Carbon isotopic fractionation in heterotrophic microbial metabolism. Applied and Environmental Microbiology 50: 9961001.CrossRefGoogle ScholarPubMed
Blondel, C. 2001. The Eocene-Oligocene ungulates from Western Europe and their environment. Palaeogeography, Palaeoclimatology, Palaeoecology 168: 125139.CrossRefGoogle Scholar
Bocherens, H., Fogel, M. L., Tuross, N., and Zeder, M. 1995. Trophic structure and climate information from isotopic signatures in Pleistocene cave fauna of southern England. Journal of Archaeological Science 22: 327340.CrossRefGoogle Scholar
Bocherens, H., Pacaud, G., Lazarev, P. A., and Mariotti, A. 1996. Stable isotope abundances (13C, 15N) in collagen and soft tissues from Pleistocene mammals from the Yakutia: implications for the paleobiology of the Mammoth Steppe. Palaeogeography, Palaeoclimatology, Palaeoecology 126: 3144.CrossRefGoogle Scholar
Boschker, H. T. S., de Brouwer, J. F. C., and Cappenberg, T. E. 1999. The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnology and Oceanography 44: 309319.CrossRefGoogle Scholar
Buatois, L. A., and Mángano, M. G. 1993. Ecospace utilization, paleoenvironmental trends, and the evolution of early non-marine biotas. Geology 21: 595598.2.3.CO;2>CrossRefGoogle Scholar
Buchheim, H. P. 1994. Eocene Fossil Lake, Green River Formation, Wyoming: a history of fluctuating salinity. Pp. 239247 in Renaut, R. W. and Last, W. M., eds. Sedimentology and geochemistry of modern and ancient saline lakes. Society for Sedimentary Geology, Tulsa, Okla.CrossRefGoogle Scholar
Carson, G. A. 1991. Silicification of fossils. Pp. 455499 in Allison, P. A. and Briggs, D. E. G., eds. Taphonomy: releasing data locked in the fossil record. Plenum, New York.CrossRefGoogle Scholar
Chappe, B., Albrecht, P., and Michaelis, W. 1982. Polar lipids of Archaebacteria in sediments and petroleums. Science 217: 6566.CrossRefGoogle ScholarPubMed
Clementz, M. T., and Koch, P. L. 2001. Differentiating aquatic mammal habitats and foraging ecology with stable isotopes in tooth enamel. Oecologia 129: 461472.CrossRefGoogle ScholarPubMed
Coffin, R. B., Fry, B., Peterson, B. J., and Wright, R. T. 1989. Carbon isotope composition of estuarine bacteria. Limnology and Oceanography 34: 13051310.CrossRefGoogle Scholar
Coffin, R. B., Velinsky, D. J., Devereux, R., Price, W. A., and Cifuentes, L. A. 1990. Stable carbon isotope analysis of nucleic acids to trace sources of dissolved substrates used by estuarine bacteria. Applied and Environmental Microbiology 56: 20122020.CrossRefGoogle ScholarPubMed
Cohen, A. S. 2003. Paleolimnology: the history and evolution of lake systems. Oxford University Press, Oxford.CrossRefGoogle Scholar
Cohen, J. E., Briand, F., and Newman, C. M. 1990. Community food webs: data and theory. Springer, New York.CrossRefGoogle Scholar
Collinson, M. E. 1986. Früchte und Samen aus dem Messeler Ölscheifer. Courier Forschungsinstitut Senckenberg 85: 217220.Google Scholar
Davis, P. G., and Briggs, D. E. G. 1995. Fossilization of feathers. Geology 23: 783786.2.3.CO;2>CrossRefGoogle Scholar
Delwiche, C. C., Zinke, P. J., Johnson, C. M., and Virginia, R. A. 1979. Nitrogen isotope distribution as a presumptive indicator of nitrogen fixation. Botanical Gazette 140: 6569.CrossRefGoogle Scholar
DeNiro, M. J. 1985. Postmortem preservation and alteration of in vivo bone collagen isotope ratios in relation to palaeodietary reconstruction. Nature 317: 806809.CrossRefGoogle Scholar
DeNiro, M. J., and Epstein, S. 1978. Influence of diet on the distribution of carbon isotopes in animals. Geochimica et Cosmochimica Acta 42: 495506.CrossRefGoogle Scholar
DeNiro, M. J., and Epstein, S. 1981. Influence of diet on the distribution of nitrogen isotopes in animals. Geochimica et Cosmochimica Acta 45: 341351.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2002. Network structure and biodiversity loss in food webs: robustness increases with connectance. Ecology Letters 5: 558567.CrossRefGoogle Scholar
Dunne, J. A., Williams, R. J., and Martinez, N. D. 2004. Network structure and robustness of marine food webs. Marine Ecology Progress Series 273: 291302.CrossRefGoogle Scholar
Estep, M. F., Tabita, F. R., Parker, P. L., and Van Baalen, C. 1978. Carbon isotope fractionation by ribulose-1.5-bisphosphate carboxylase from various organisms. Plant Physiology 61: 680687.CrossRefGoogle ScholarPubMed
Evans, R. D., Bloom, A. J., Sukrapanna, S. S., and Ehleringer, J. R. 1996. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill, cv T-5) grown under ammonium or nitrate nutrition. Plant Cell Environment 19: 13171323.CrossRefGoogle Scholar
Farquhar, G. D., Ehleringer, J. R., and Hubick, K. T. 1989. Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology 40: 503537.CrossRefGoogle Scholar
Ferris, F. G., Fyfe, W. S., and Beveridge, T. J. 1988. Metallic ion binding by Bacillus substilis: implications for the fossilization of microorganisms. Geology 16: 149152.2.3.CO;2>CrossRefGoogle Scholar
France, R. L. 1995. Differentiation between littoral and pelagic food webs in lakes using carbon isotopes. Limnology and Oceanography 40: 13101313.CrossRefGoogle Scholar
Franzen, J. L. 1990. Grube Messel. Pp. 289294 in Briggs, D. E. G. and Crowther, P. R., eds. Paleobiology: a synthesis. Blackwell Scientific, Oxford.Google Scholar
Franzen, J. L., and Michaelis, W. 1988. Eocene Lake Messel. Courier Forschungsinstitut Senckenberg 107: 1452.Google Scholar
Franzen, J. L., Weber, J., and Wuttke, M. 1982. Senckenberg-Grabungen in der Grube Messel bei Darmstadt. 3. Eergenmosse 1979–1981. Courier Forschungsinstitut Senckenberg 54: 1118.Google Scholar
Freeman, K. H., Hayes, J. M., Trendel, J., and Albrecht, P. 1990. Evidence from carbon isotope measurements for diverse origins of sedimentary hydrocarbons. Nature 343: 254256.CrossRefGoogle ScholarPubMed
Fry, B., and Sherr, E. B. 1984. δ13C measurements as indicators of carbon flow in marine and freshwater ecosystems. Contributions to Marine Science 27: 1347.Google Scholar
Gearing, J. N. 1991. The study of diet and trophic relationships through natural abundance 13C. Pp. 201218 in Coleman, D. and Fry, B., eds. Carbon isotope techniques. Academic Press, San Diego.CrossRefGoogle Scholar
Gierlowski-Kordesch, E. H., and Park, L. E. 2004. Comparing species diversity in the modern and fossil record of lakes. Journal of Geology 112: 703717.CrossRefGoogle Scholar
Goossens, H., Rijpstra, W. I. C., Düren, R. R., de Leeuw, J. W., and Schenck, P. A. 1985. Bacterial contribution to sedimentary organic matter; a comparative study of lipid moieties in bacteria and Recent sediments. Organic Geochemistry 10: 683696.CrossRefGoogle Scholar
Goth, K. 1990. Der Messeler Ölschiefer—ein Algenlaminit. Courier Forschungsinstitut Senckenberg 131: 1143.Google Scholar
Gray, J. 1988. Evolution of the freshwater ecosystem: the fossil record. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 1214.CrossRefGoogle Scholar
Habersetzer, J., and Storch, G. 1987. Klassifikation und funktionelle Flügelmorphologie paläogener Fledermäuse (Mammalia, Chiroptera). Courier Forschungsinstitut Senckenberg 91: 117150.Google Scholar
Habersetzer, J., Richter, G., and Storch, G. 1992. Bats: already highly specialized insect predators. Pp. 181191 in Schaal, and Ziegler, 1992.Google Scholar
Haq, B. U., Hardenbol, J., and Vail, P. R. 1987. Chronology of fluctuating sea levels since the Triassic. Science 235: 11561167.CrossRefGoogle ScholarPubMed
Harding, I. C., and Chant, L. S. 2000. Self-sedimented diatom mats as agents of exceptional fossil preservation in the Oligocene Florissant Lake Beds, Colorado, United States. Geology 28: 195198.2.0.CO;2>CrossRefGoogle Scholar
Harms, F.-J. 2002. Steine erzählen Geschichte(n): Ursachen für die Entstehung des Messel-Sees gefunden. Natur und Museum 132: 14.Google Scholar
Harrigan, P., Zieman, J. C., and Macko, S. A. 1989. The base of nutritional support for the gray snapper (Lutjanus griseus): an evaluation based on a combined stomach content and stable isotope analysis. Bulletin of Marine Science 44: 6577.Google Scholar
Hartenberger, J. L. 1987. Modalités des extinctions et apparitions chez les mammifères du Paléogène d'Europe. Mémoires de la Société Géologique de France 150: 133143.Google Scholar
Hayes, J. M., Takigiku, R., Ocampo, R., Callot, H. J., and Albrecht, P. 1987. Isotopic compositions and probably origins of organic molecules in the Eocene Messel Shale. Nature 329: 4851.CrossRefGoogle Scholar
Hayes, J. M., Freeman, K. H., Popp, B. N., and Hoham, C. H. 1989. Compound-specific isotopic analyses: a novel tool for reconstruction of ancient biogeochemical processes. Organic Geochemistry 16: 11151128.CrossRefGoogle Scholar
Hecky, R. E., and Hesslein, R. H. 1995. Contributions of benthic algae to lake food webs as revealed by stable isotope analysis. Journal of the North American Benthological Society 14: 631653.CrossRefGoogle Scholar
Hullar, M. A. J., Fry, B., Peterson, B. J., and Wright, R. T. 1996. Microbial utilization of estuarine dissolved organic carbon: a stable isotope tracer approach tested by mass balance. Applied and Environmental Microbiology 62: 24892493.CrossRefGoogle ScholarPubMed
Hummel, S., and Herrmann, B. 1994. General aspects of sample preparation. Pp. 5968 in Hummel, S. and Herrmann, B., eds. Ancient DNA: recovery and analysis of genetic material from paleontological, archaeological, museum, medical, and forensic specimens. Springer, New York.CrossRefGoogle Scholar
Hutchens, J. J., Benfield, E. F., and Webster, J. R. 1997. Diet and growth of a leaf-shredding caddisfly in southern Appalachian streams of contrasting disturbance history. Hydrobiologia 364: 193201.CrossRefGoogle Scholar
Jacobs, B. F. 2004. Palaeobotanical studies from tropical Africa: relevance to the evolution of forest, woodland and savannah biomes. Philosophical Transactions of the Royal Society of London B 359: 15731583.CrossRefGoogle Scholar
Jacobs, B. F., and Herendeen, P. S. 2004. Eocene dry climate and woodland vegetation in tropical Africa reconstructed from fossil leaves from northern Tanzania. Palaeogeography, Palaeoclimatology, Palaeoecology 213: 115123.CrossRefGoogle Scholar
Janis, C. M. 1993. Tertiary mammal evolution in the context of changing climates, vegetation, and tectonic events. Annual Review of Ecology and Systematics 24: 467500.CrossRefGoogle Scholar
Keller, M., and Schaal, S. 1992a. Lizards: reptiles en route to success. Pp. 121133 in Schaal, and Ziegler, 1992.Google Scholar
Keller, M., Kaplan, W. A., and Wofsy, S. C. 1986. Emissions of N20, CH4, and CO2 from tropical soils. Journal of Geophysical Research 91: 17911802.CrossRefGoogle Scholar
Keller, M., Kaplan, W. A., and Wofsy, S. C. 1992b. Crocodiles: large ancient reptiles. Pp. 109118 in Schaal, and Ziegler, 1992.Google Scholar
Kimble, B. J., Maxwell, J. R., Eglinton, G., Albrecht, P., Ensminger, A., Arpino, P., and Ourisson, G. 1974. Tri- and tetraterpenoid hydrocarbons in the Messel oil shale. Geochimica et Cosmochimica Acta 28: 11651181.CrossRefGoogle Scholar
Kling, G. W., Fry, B., and O'Brien, W. J. 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73: 561566.CrossRefGoogle Scholar
Kohl, D. H., and Shearer, G. 1980. Isotopic fractionation associated with symbiotic N2 fixation and uptake of NO3 by plants. Plant Physiology 66: 5156.CrossRefGoogle ScholarPubMed
Kvaček, Z., Böhme, M., Dvorak, Z., Konzalova, M., Mach, K., Prokop, J., and Rajchl, M. 2004. Early Miocene freshwater and swamp ecosystems of the Most Basin (northern Bohemia) with particular reference to the Bilina Mine section. Journal of the Czech Geological Society 49: 140.Google Scholar
Köhler, J. 1997. Die Fossillagerstätte Enspel: vegetation, vegetationsdynamik, und klima im Oberoligozän. . Universität Tübingen, Tübingen.Google Scholar
Leavitt, S. W., and Long, A. 1986. Stable-carbon isotope variability in tree foliage and wood. Ecology 67: 10021010.CrossRefGoogle Scholar
Legendre, S., and Hartenberger, J. L. 1992. Evolution of mammalian faunas in Europe during the Eocene and Oligocene. Pp. 516528 in Prothero, D. R. and Berggren, W. A., eds. Eocene-Oligocene climatic and biotic evolution. Princeton University Press, Princeton, N.J. CrossRefGoogle Scholar
Lenz, O. K., Wilde, V., Riegel, W., and Schaarschmidt, F. 2005. Climate and vegetation dynamics in the pit in Messel—a reappraisal of paleontological data from 1980. Courier Forschungsinstitut Senckenberg 255: 81101.Google Scholar
Lutz, H. 1986. Eine neue Unterfamilie der Formicidae (Insecta: Hymenoptera) aus dem mittel-eozänen Ölschiefer der ‘Grube Messel’ bei Darmstadt (Deutschland, S.-Hessen). Senckenbergiana Lethaea 67: 177218.Google Scholar
Lutz, H. 1990. Systematische und Palökologische Untersuchungen an Insekten aus dem Mittel-eozän der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg 124: 1165.Google Scholar
Lutz, H. 1991. Autochthone aquatische Arthropoda aus dem Mittel-Eozän der Funstätte Messel (Insecta: Heteroptera; Coleoptera; cf. Diptera-Nematocera; Crustacea: Cladocera). Courier Forschungsinstitut Senckenberg 139: 119125.Google Scholar
Lutz, H. 1992. Giant ants and other rarities: the insect fauna. Pp. 5567 in Schaal, and Ziegler, 1992.Google Scholar
MacFadden, B. J., Wang, Y., Cerling, T. E., and Anaya, F. 1994. South American fossil mammals and carbon isotopes: a 25 million-year sequence from the Bolivian Andes. Palaeogeography, Palaeoclimatology, Palaeoecology 103: 257268.CrossRefGoogle Scholar
MacFadden, B. J., Solounias, N., and Cerling, T. E. 1999. Ancient diets, ecology, and extinction of 5-million-year-old horses from Florida. Science 283: 824827.CrossRefGoogle ScholarPubMed
Macko, S. A., and Estep, M. F. 1984. Microbial alteration of stable nitrogen and carbon isotopic compositions of organic matter. Organic Geochemistry 6: 787790.CrossRefGoogle Scholar
Macko, S. A., Estep, M. F., and Hoering, T. C. 1982. Nitrogen isotope fractionation by blue-green algae cultured in molecular nitrogen and nitrate. Carnegie Institution of Washington Yearbook 81: 413417.Google Scholar
Mai, D. H. 1981. Entwicklung und klimatische Differenzierung der Laubwaldflora Mitteleuropas im Tertiär. Flora 171: 525582.CrossRefGoogle Scholar
Manchester, S. R., Collinson, M. E., and Goth, K. 1994. Fruits of the Juglandaceae from the Eocene of Messel, Germany, and implications for early Tertiary phytogeographic exchange between Europe and western North America. International Journal of Plant Science 155: 388394.CrossRefGoogle Scholar
Markwick, P. J. 1996. Late Cretaceous to Pleistocene climates: nature of the transition from a ‘hot-house’ to an ‘ice-house’ world. . University of Chicago, Chicago.Google Scholar
Markwick, P. J. 2002. Integrating the present and past records of climate, biodiversity and biogeography: implications for palaeoecology and palaeoclimatology. In Crame, J. A. and Owen, A. W., eds. Palaeobiogeography and biodiversity change: a comparison of the Ordovician and Mesozoic-Cenozoic radiations. Geological Society of London Special Publication 194: 179199.Google Scholar
Martinelli, L. A., Piccolo, M. C., Townsend, A. R., Vitousek, P. M., Cuevas, E., McDowell, W., Robertson, G. P., Santos, O. C., and Tresedar, K. 1999. Nitrogen stable isotopic composition of leaves and soil: tropical versus temperate forests. Biogeochemistry 46: 4565.CrossRefGoogle Scholar
Masters, P. M. 1987. Preferential preservation of noncollagenous protein during bone diagenesis: implications for chronometric and stable isotopic measurements. Geochimica et Cosmochimica Acta 51: 32093214.CrossRefGoogle Scholar
Matthes, G. 1966. Zur geologie des Ölschiefervorkommens von Messel bei Darmstadt. Abhandlungen des Hessischen Landesamtes für Bodenforschung 51: 187.Google Scholar
Matthes, G. 1968. Les couches éocènes dans la région du fosse rhénan septentrional. Mémoires de la Bureau de Recherche Géologiques et Minières 58: 327337.Google Scholar
Mayr, G. 2005. The Paleogene fossil record of birds in Europe. Biological Review 80: 515542.CrossRefGoogle ScholarPubMed
McCutchan, J. H., Lewis, W. M., Kendall, C., and McGrath, C. C. 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulfur. Oikos 102: 378390.CrossRefGoogle Scholar
McKenna, M. C. 1980. Eocene paleolatitude, climate, and mammals of Ellesmere Island. Palaeogeography, Palaeoclimatology, Palaeoecology 30: 349362.CrossRefGoogle Scholar
McKenna, M. C. 1983. Holarctic landmass rearrangement, cosmic events, and Cenozoic terrestrial organisms. Annals of the Missouri Botanical Garden 70: 459489.CrossRefGoogle Scholar
Mehner, T., Benndorf, J., Kasprzak, P., and Koschel, R. 2002. Biomanipulations of lake ecosystems: successful applications and expanding complexity in the underlying science. Freshwater Biology 47: 24532465.CrossRefGoogle Scholar
Melchor, R. N., Genise, J. F., and Miquel, S. E. 2002. Ichnology, sedimentology, and paleontology of Eocene calcareous paleosols from a palustrine sequence, Argentina. Palaios 17: 1635.2.0.CO;2>CrossRefGoogle Scholar
Mertz, D. F., and Renne, P. R. 2005. A numerical age for the Messel fossil deposit (UNESCO World Heritage Site) derived from 40Ar/39Ar dating on a basaltic rock fragment. Courier Forschungsinstitut Senckenberg 255: 6775.Google Scholar
Mertz, D. F., Harms, F.-J., Gabriel, G., and Felder, M. 2004. Arbeitstreffen in der Forschungsstation Grube Messel mit neuen Ergebnissen aus der Messel-Forschung. Natur und Museum 134: 289290.Google Scholar
Meyer, H. W., Rielly, K., Maguire, S., O'Brien, N. R., and Ross, A. M. 2001. Fossilization of Tertiary insects and plants by polysaccharide film. Geological Society of America Abstracts with Programs 33: 63.Google Scholar
Meyers, P. A. 1997. Organic geochemical proxies of paleoceanographic, paleolimnologic, and paleoclimatic processes. Organic Geochemistry 27: 213250.CrossRefGoogle Scholar
Michaelis, W., and Albrecht, P. 1979. Molecular fossils of Archaebacteria in kerogen. Naturwissenschaften 66: 420422.CrossRefGoogle Scholar
Micklich, N. 1992. Ancient knights-in-armour and modern cannibals. Pp. 6991 in Schaal, and Ziegler, 1992.Google Scholar
Micklich, N. 2002. The fish fauna of Messel Pit: a nursery school? Courier Forschungsinstitut Senckenberg 237: 97127.Google Scholar
Minagawa, M., and Wada, E. 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation between δ15N and animal age. Geochimica et Cosmochimica Acta 48: 11351140.CrossRefGoogle Scholar
Mizutani, H., Fukuda, M., and Kabaya, Y. 1992. 13C and 15N enrichment factors of feathers of 11 species of adult birds. Ecology 73: 13911395.CrossRefGoogle Scholar
Müller-Sohnius, D., Horn, P., and Hukkenholz, H. G. 1989. Kalium-Argon Datierungen an tertiären Vulkaniten der Hocheifel (BRD). Chemie Erde 49: 119136.Google Scholar
Murray, A. M. 2001. The oldest fossil cichlids (Teleostei: Perciformes): indication of a 45 million-year-old species flock. Proceedings of the Royal Society of London B 268: 679684.CrossRefGoogle ScholarPubMed
Mycke, B., and Michaelis, W. 1986. Molecular fossils from chemical degradation of macromolecular organic matter. Organic Geochemistry 10: 847858.CrossRefGoogle Scholar
Mycke, B., Narjes, F., and Michaelis, W. 1987. Bacteriohopanetetrol from chemical degradation of an oil shale kerogen. Nature 326: 179181.CrossRefGoogle Scholar
Niell, C., Piccolo, M. C., Steudler, P. A., Melillo, J. M., Feigl, B. J., and Cerri, C. C. 1995. Nitrogen dynamics in soils of forests and active pastures in the western Brazilian Amazon Basin. Soil Biology and Biochemistry 27: 11671175.CrossRefGoogle Scholar
Nix, T., and Feist-Burkhardt, S. 2003. New methods applied to the microstructure analysis of Messel oil shale: confocal laser scanning microscopy (CLSM) and environmental scanning electron microscopy (ESEM). Geology Magazine 140: 469478.CrossRefGoogle Scholar
Olive, L. W., Pinnegar, J. K., Polunin, N. V. C., Richards, G., and Welch, R. 2003. Isotope trophic-step fractionation: a dynamic equilibrium model. Journal of Animal Ecology 72: 608617.CrossRefGoogle ScholarPubMed
Ostrom, P. H., Macko, S. A., Engel, M. H., and Russell, D. A. 1993. Assessment of trophic structure of Cretaceous communities based on stable nitrogen isotope analyses. Geology 21: 491494.2.3.CO;2>CrossRefGoogle Scholar
Ostrom, P. H., Zonneveld, J.-P., and Robbins, L. L. 1994. Organic geochemistry of hard parts: assessment of isotopic variability and indigeneity. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 201212.CrossRefGoogle Scholar
Panacost, R. D., and Sinninghe Damste, J. S. 2003. Carbon isotopic compositions of prokaryotic lipids as tracers of carbon cycling in diverse settings. Chemical Geology 195: 2958.CrossRefGoogle Scholar
Pearson, S. F., Levey, D. J., Greenberg, C. H., and del Rio, C. M. 2003. Effects of elemental composition on the incorporation of dietary nitrogen and carbon isotopic signatures in an omnivorous songbird. Oecologia 135: 516523.CrossRefGoogle Scholar
Peters, D. S. 1991. Zoogeographical relationships of the Eocene avifauna from Messel (Germany). Acta XX Congressus Internationalis Ornithologici 1: 572577.Google Scholar
Peters, D. S. 1992. Messel birds: a land-based assemblage. Pp. 137151 in Schaal, and Ziegler, 1992.Google Scholar
Peters, R. B., and Sloan, L. C. 2000. High concentrations of greenhouse gases and polar stratospheric clouds: a possible solution to high-latitude faunal migration at the latest Paleocene thermal maximum. Geology 28: 979982.2.0.CO;2>CrossRefGoogle Scholar
Pimm, S. L., Lawton, J. H., and Cohen, J. E. 1991. Food web patterns and their consequences. Nature 350: 669674.CrossRefGoogle Scholar
Pinnegar, J. K., and Polunin, N. V. C. 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 12: 225231.CrossRefGoogle Scholar
Pirrung, M., Fischer, C., Büchel, G., Gaupp, R., Lutz, H., and Neuffer, F. O. 2003. Lithofacies succession of maar crater deposits in the Eifel area (Germany). Terra Nova 15: 125132.CrossRefGoogle Scholar
Post, D. M. 2002. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703718.CrossRefGoogle Scholar
Post, D. M., Pace, M. L., and Hairston, N. G. 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 10471049.CrossRefGoogle ScholarPubMed
Rabenstein, R., Usman, R., and Schaal, S. 2004. Looking at modern lakes as models for Eocene habitats from Messel. Courier Forschungsinstitut Senckenberg 252: 115138.Google Scholar
Richter, G. 1987. Untersuchungen zur Ernährung eozäner Säuger aus der Fossilfundstätte Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg 91: 133.Google Scholar
Richter, G. 1992. Fossilized gut contents: analysis and interpretation. Pp. 285289 in Schaal, and Ziegler, 1992.Google Scholar
Richter, G., and Baszio, S. 2001. Traces of a limnic food web in the Eocene Lake Messel—a preliminary report based on fish coprolite analyses. Palaeogeography, Palaeoclimatology, Palaeoecology 166: 345368.CrossRefGoogle Scholar
Richter, G., and Storch, G. 1980. Beiträge zur Ernährungsbiologie eozäner Fledermäuse aus der ‘Grube Messel.’ Natur und Museum 110: 353367.Google Scholar
Richter, G., and Wedmann, S. 2005. Ecology of the Eocene Lake Messel revealed by analysis of small fish coprolites and sediments from a drilling core. Palaeogeography, Palaeoclimatology, Palaeoecology 223: 147161.CrossRefGoogle Scholar
Rietschel, S. 1988. Taphonomic biasing in the Messel fauna and flora. Courier Forschungsinstitut Senckenberg 107: 169182.Google Scholar
Robbins, C. T., Felicetti, L. A., and Sponheimer, M. 2005. The effect of dietary protein quality on nitrogen isotope discrimination in mammals and birds. Oecologia 144: 534540.CrossRefGoogle ScholarPubMed
Robinson, N., Eglinton, G., Cranwell, P. A., and Zeng, Y. B. 1989. Messel oil shale (western Germany): assessment of depositional palaeoenvironment from the content of biological marker compounds. Chemical Geology 76: 152173.CrossRefGoogle Scholar
Rolf, C., Pucher, R., Schulz, R., and Wonik, T. 2005. Magnetic investigations at the kernel of the Messel Pit 2001—first magnetic knowledge. Courier Forschungsinstitut Senckenberg 255: 4755.Google Scholar
Roth, J. L., and Dilcher, D. L. 1978. Some considerations in leaf size and leaf margin analysis of fossil leaves. Courier Forschungsinstitut Senckenberg 30: 165171.Google Scholar
Royer, D. L., Wing, S. L., Beerling, D. J., Jelley, D. W., Koch, P. L., Hickey, L. J., and Berner, R. A. 2001. Paleobotanical evidence for near present-day levels of atmospheric CO2 during part of the Tertiary. Science 292: 23102313.CrossRefGoogle ScholarPubMed
Sasche, M. 2005. A remarkable fossiliferous mass flow deposit in the Eocene Eckfeld Maar (Germany)—sedimentological, taphonomical, and palaeoecological considerations. Facies 51: 173184.Google Scholar
Schaal, S., and Ziegler, W., eds. 1992. Messel—an insight into the history of life and of the Earth. Clarendon, Oxford.Google Scholar
Schaarschmidt, F. 1992. The vegetation: fossil plants as witnesses of a warm climate. Pp. 2952 in Schaal, and Ziegler, 1992.Google Scholar
Schmitz, B., and Andreasson, F. P. 2001. Air humidity and lake d18O during the latest Paleocene-earliest Eocene in France from recent and fossil fresh-water and marine gastropod d18O, d13C, and 87Sr/86Sr. Geological Society of America Bulletin 113: 774789.2.0.CO;2>CrossRefGoogle Scholar
Schmitz, M. 1991. Die Koprolithen mitteleozäner Vertebraten aus der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg 137: 1159.Google Scholar
Schweizer, M. K., Wooller, M. W., Toporski, J. K. W., Fogel, M. L., and Steele, A. 2006. Examination of an Oligocene lacustrine ecosystem using C and N isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 230: 335351.CrossRefGoogle Scholar
Shearer, G., and Kohl, D. H. 1989. Estimates of N2 fixation in ecosystems: the need for and basis of the 15N natural abundance method. Pp. 342374 in Rundel, R. W., Ehleringer, J. R., and Nagy, K. A., eds. Stable isotopes in ecological research. Springer, New York.CrossRefGoogle Scholar
Sillen, A., and Lee-Thorp, J. A. 1994. Trace element and isotope aspects of predator-prey relationships in terrestrial foodwebs. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 243255.CrossRefGoogle Scholar
Sittler, C. 1968. L'analyse pollinique dans l'Est de la France: étude des formations éocènes ou rapportées a l'Éocène et des stratotypes polynologiques de Borken et de Messel. Mémoires de la Bureau de Recherche Géologiques et Minières 58: 165171.Google Scholar
Smith, B. N., and Epstein, S. 1971. Two categories of 13C/12C ratios for higher plants. Plant Physiology 47: 380384.CrossRefGoogle Scholar
Sponheimer, M., and Lee-Thorp, J. A. 1999. Reconstructing the diet of the early hominid Australopithecus africans using 13C/12C analysis. Science 238: 368370.CrossRefGoogle Scholar
Storch, G., and Habersetzer, J. 1988. Archaeonycteris pollex (Mammalia, Chiroptera), eine neue Fledermaus aus dem Eozän der Grube Messel bei Darmstadt. Courier Forschungsinstitut Senckenberg 107: 263273.Google Scholar
Storch, G., and Schaarschmidt, F. 1992. The Messel fauna and flora: a biogeographical puzzle. Pp. 291297 in Schaal, and Ziegler, 1992.Google Scholar
Thiele-Pfeiffer, H. 1988. Die Mikroflora aus dem mitteleozän Ölscheifer von Messel bei Darmstadt. Palaeontographica, Abteilung B 211: 186.Google Scholar
Toporski, J. K. W., Steele, A., Westall, F., Avci, R., Martill, D. M., and McKay, D. S. 2002. Morphological and spectral investigation of exceptionally well-preserved bacterial biofilms from the Oligocene Enspel formation, Germany. Geochimica et Cosmochimica Acta 66: 17731791.CrossRefGoogle Scholar
Torricelli, S., Knezaurek, G., and Biffi, U. 2006. Sequence biostratigraphy and paleoenvironmental reconstruction in the Early Eocene Figols Group of the Tremp-Graus Basin (south-central Pyrenees, Spain). Palaeogeography, Palaeoclimatology, Palaeoecology 232: 135.CrossRefGoogle Scholar
Vander Zanden, M. J., and Rasmussen, J. B. 1999. Primary consumer δ15N and δ13C and the trophic position of aquatic consumers. Ecology 80: 406416.Google Scholar
Vander Zanden, M. J., and Rasmussen, J. B. 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 20612066.CrossRefGoogle Scholar
Vander Zanden, M. J., Shuter, B. J., Lester, N., and Rasmussen, J. B. 1999. Patterns of food chain length in lakes: a stable isotope study. American Naturalist 154: 406416.CrossRefGoogle Scholar
Vitousek, P. M., and Sanford, R. L. 1986. Nutrient cycling in moist tropical forest. Annual Review of Ecology and Systematics 17: 137167.CrossRefGoogle Scholar
Vogt, K. A., Grier, C. C., and Vogt, D. J. 1986. Production, turnover, nutrient dynamics of above- and below-ground detritus of world forests. Advances in Ecological Research 15: 303377.CrossRefGoogle Scholar
von Koenigswald, W., Richter, G., and Storch, G. 1981. Nachweiz von Hornschuppen bei Eomanis waldi aus der ‘Grube Messel’ bei Darmstadt (Mammalia, Pholidota). Senckenbergiana Lethaea 61: 291298.Google Scholar
Wang, Y., Cerling, T. E., and MacFadden, B. J. 1994. Fossil horses and carbon isotopes: new evidence for Cenozoic dietary, habitat, and ecosystem changes in North America. Palaeogeography, Palaeoclimatology, Palaeoecology 107: 269279.CrossRefGoogle Scholar
Whiticar, M. J., Faber, E., and Schoell, M. 1986. Biogenic methane formation in marine and freshwater environments: CO2 reduction vs. acetate fermentation—isotope evidence. Geochimica et Cosmochimica Acta 50: 693709.CrossRefGoogle Scholar
Wilde, V. 1989. Untersuchungen zur Systematik der Blattreste aus dem Mitteleozän der Grube Messel bei Darmstadt (Hessen, Bundesrepublik Deutschland). Courier Forschungsinstitut Senckenberg 115: 1213.Google Scholar
Wilf, P., Cúneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300: 122125.CrossRefGoogle ScholarPubMed
Williams, C. J., Johnson, A. H., LePage, B. A., Vann, D. R., and Sweda, T. 2003. Reconstruction of Tertiary Metasequoia forests. II. Structure, biomass and productivity in Eocene floodplain forests in the Canadian Arctic. Paleobiology 29: 271292.2.0.CO;2>CrossRefGoogle Scholar
Williams, R. J., and Martinez, N. D. 2000. Simple rules yield complex food webs. Nature 404: 180183.CrossRefGoogle ScholarPubMed
Williams, R. J., and Martinez, N. D. 2004. Limits to trophic levels and omnivory in complex food webs: theory and data. American Naturalist 163: 458468.CrossRefGoogle ScholarPubMed
Wilson, M. V. 1980. Eocene lake environments: depth and distance-from-shore variation in fish, insect and plant assemblages. Palaeogeography, Palaeoclimatology, Palaeoecology 32: 2144.CrossRefGoogle Scholar
Wilson, M. V. 1987. Predation as a source of fish fossils in Eocene lake sediments. Palaios 2: 497504.CrossRefGoogle Scholar
Wilson, M. V. 1988. Reconstruction of ancient lake environments using both autochthonous and allochthonous fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 62: 609623.CrossRefGoogle Scholar
Wonik, T. 2005. First results of the measurement in the Forschungsbohrung Messel 2001. Courier Forschungsinstitut Senckenberg 255: 1120.Google Scholar
Wuttke, M. 1983. Weichteilerhaltung durch lithifizierte Mikoorganismen bei mittel-eozänen Vertebraten aus dem ölschiefer der “Grube Messel” bei Darmstadt. Senckenbergiana Lethaea 64: 503527.Google Scholar
Wuttke, M. 1992a. Amphibia at Lake Messel: salamanders, toads, and frogs. Pp. 9598 in Schaal, and Ziegler, 1992.Google Scholar
Wuttke, M. 1992b. Conservation, dissolution, transformation: on the behavior of biogenic materials during fossilization. Pp. 263275 in Schaal, and Ziegler, 1992.Google Scholar
Wuttke, M. 1992c. Death and burial of the vertebrates. Pp. 263275 in Schaal, and Ziegler, 1992.Google Scholar
Zachos, J. C., Lohmann, K. C., Walker, J. C. G., and Sherwood, W. W. 1993. Abrupt climate change and transient climates during the Paleogene: a marine perspective. Journal Of Geology 101: 191213.CrossRefGoogle ScholarPubMed
Zimmerle, W. 1993. Some aspects of Cenozoic maar sediments of Europe: the source-rock potential and their exceptionally good fossil preservation. Pp. 467476 in Negendank, J. F. W. and Zolitschka, B., eds. Paleolimnology of European maar lakes. Springer, Berlin.CrossRefGoogle Scholar