Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-24T20:12:20.772Z Has data issue: false hasContentIssue false

Symmetric waxing and waning of marine invertebrate genera

Published online by Cambridge University Press:  08 April 2016

Michael Foote*
Affiliation:
Department of the Geophysical Sciences, University of Chicago, 5734 South Ellis Avenue, Chicago, Illinois 60637. E-mail: mfoote@uchicago.edu

Abstract

Occurrence data from the Paleobiology Database are used to analyze the waxing and waning of genera over time. Irrespective of whether we tabulate species richness, frequency of occurrence, geographic range, or other measures, the average rise and fall of genera is remarkably symmetrical. Genera tend already to be in a state of decline when they become extinct. Genera that last appear in the major mass extinction stages, however, are more frequently truncated while they are holding steady or even increasing. This need not imply that mass extinctions are qualitatively different from other events; it is consistent with the expected effects of simply increasing the magnitude of extinction. For reasons that are not completely clear, post-Paleozoic genera show less of a rise and fall on average and tend to be less symmetrical than do Paleozoic genera.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98: 62616266.CrossRefGoogle ScholarPubMed
Bambach, R. K., Knoll, A. H., and Wang, S. C. 2004. Origination, extinction, and mass depletions of marine diversity. Paleobiology 30: 522542.2.0.CO;2>CrossRefGoogle Scholar
Bowring, S. A., and Erwin, D. H. 1998. A new look at evolutionary rates in deep time: uniting paleontology and high-precision geochronology. GSA Today 8: 18.Google Scholar
Chen, Xu, Melchin, M. J., Sheets, H. D., Mitchell, C. E., and Jun-Xuan, Fan. 2005. Patterns and processes of latest Ordovician graptolite extinction and recovery based on data from South China. Journal of Paleontology 79: 842861.Google Scholar
Connolly, S. R., and Miller, A. I. 2001. Joint estimation of sampling and turnover rates from fossil databases: capture-mark-recapture methods revisited. Paleobiology 27: 751767.2.0.CO;2>CrossRefGoogle Scholar
Crampton, J. S., Foote, M., Beu, A. G., Cooper, R. A., Matcham, I., Jones, C. M., Maxwell, P. A., and Marshall, B. A. 2006a. Second-order sequence stratigraphic controls on the quality of the fossil record at an active margin: New Zealand Eocene to Recent shelf molluscs. Palaios 21: 86105.CrossRefGoogle Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006b. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32: 509532.CrossRefGoogle Scholar
Dowsett, H. J. 1989. Application of the graphic correlation method to Pliocene marine sequences. Marine Micropaleontology 14: 332.CrossRefGoogle Scholar
Foote, M. 2000. Origination and extinction components of taxonomic diversity: Paleozoic and post-Paleozoic dynamics. Paleobiology 26: 578605.2.0.CO;2>CrossRefGoogle Scholar
Foote, M. 2001. Inferring temporal patterns of preservation, origination, and extinction from taxonomic survivorship analysis. Paleobiology 27: 602630.2.0.CO;2>CrossRefGoogle Scholar
Foote, M. 2003. Origination and extinction through the Phanerozoic: a new approach. Journal of Geology 111: 125148.CrossRefGoogle Scholar
Foote, M. 2005. Pulsed origination and extinction in the marine realm. Paleobiology 31: 620.2.0.CO;2>CrossRefGoogle Scholar
Foote, M. 2007. Extinction and quiescence in marine animal genera. Paleobiology 33: 262273.CrossRefGoogle Scholar
Fortey, R. A. 1989. There are extinctions and extinctions: examples from the lower Palaeozoic. Philosophical Transactions of the Royal Society of London B 325: 327355.Google Scholar
Gaston, K. J. 2003. The structure and dynamics of geographic ranges. Oxford University Press, Oxford.CrossRefGoogle Scholar
Gould, S. J., Raup, D. M., Sepkoski, J. J. Jr., Schopf, T. J. M., and Simberloff, D. S. 1977. The shape of evolution: a comparison of real and random clades. Paleobiology 3: 2340.CrossRefGoogle Scholar
Gould, S. J., Gilinsky, N. L., and German, R. Z. 1987. Asymmetry of lineages and the direction of evolutionary time. Science 236: 14371441.CrossRefGoogle ScholarPubMed
Gradstein, F. M., Ogg, J. G., and Smith, A. G., eds. 2004. A geologic time scale 2004. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Harland, W. B., Armstrong, R. L., Cox, A. V., Craig, L. E., Smith, A. G., and Smith, D. G. 1990. A geologic time scale 1989. Cambridge University Press, Cambridge.Google Scholar
Holland, S. M. 2003. Confidence limits on fossil ranges that account for facies changes. Paleobiology 29: 468479.2.0.CO;2>CrossRefGoogle Scholar
Holland, S. M., and Patzkowsky, M. E. 2002. Stratigraphic variation in the timing of first and last occurrences. Palaios 17: 134146.2.0.CO;2>CrossRefGoogle Scholar
Jablonski, D. 1986. Background and mass extinctions: the alternation of macroevolutionary regimes. Science 231: 129133.CrossRefGoogle ScholarPubMed
Jablonski, D. 1987. Heritability at the species level: analysis of geographic ranges of Cretaceous mollusks. Science 238: 360363.CrossRefGoogle ScholarPubMed
Jablonski, D. 1995. Extinctions in the fossil record. Pp. 2555 in Lawton, J. H. and May, R. M., eds. Extinction rates. Oxford University Press, Oxford.CrossRefGoogle Scholar
Jablonski, D. 2002. Survival without recovery after mass extinctions. Proceedings of the National Academy of Sciences USA 99: 81398144.CrossRefGoogle ScholarPubMed
Jablonski, D. 2005. Mass extinctions and macroevolution. Paleobiology 31: 192210.CrossRefGoogle Scholar
Jablonski, D., Finarelli, J. A., and Roy, K. 2006. What, if anything, is a genus? Testing the analytical units of paleobiology against molecular data. Geological Society of America Abstracts with Programs 38(7): 169.Google Scholar
Jernvall, J., and Fortelius, M. 2004. Maintenance of trophic structure in fossil mammal communities: site occupancy and taxon resilience. American Naturalist 164: 614624.CrossRefGoogle ScholarPubMed
Kiessling, W., and Aberhan, M. 2007. Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. Journal of Biogeography 34: 14731489.CrossRefGoogle Scholar
Kitchell, J. A., and MacLeod, N. 1988. Macroevolutionary interpretation of symmetry and synchroneity in the fossil record. Science 240: 11901193.CrossRefGoogle ScholarPubMed
Lu, P. J., Yogo, M., and Marshall, C. R. 2006. Phanerozoic marine biodiversity dynamics in light of the incompleteness of the fossil record. Proceedings of the National Academy of Sciences USA 103: 23762379.CrossRefGoogle ScholarPubMed
Miller, A. I. 1997. A new look at age and area: the geographic and environmental expansion of genera during the Ordovician Radiation. Paleobiology 23: 410419.CrossRefGoogle Scholar
Miller, A. I., and Foote, M. 1996. Calibrating the Ordovician Radiation of marine life: implications for Phanerozoic diversity trends. Paleobiology 22: 304309.CrossRefGoogle ScholarPubMed
Miller, A. I., and Foote, M. 2003. Increased longevities of post-Paleozoic marine genera after mass extinctions. Science 302: 10301032.CrossRefGoogle ScholarPubMed
Peters, S. E. 2005. Geologic constraints on the macroevolutionary history of marine animals. Proceedings of the National Academy of Sciences USA 102: 1232612331.CrossRefGoogle ScholarPubMed
R Development Core Team. 2006. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna (URL http://www.R-project.org).Google Scholar
Raia, P., Meloro, C., Loy, A., and Barbera, C. 2006. Species occupancy and its course in the past: macroecological patterns in extinct communities. Evolutionary Ecology Research 8: 181194.Google Scholar
Raup, D. M. 1985. Mathematical models of cladogenesis. Paleobiology 11: 4252.CrossRefGoogle Scholar
Raup, D. M., and Sepkoski, J. J. Jr. 1982. Mass extinctions in the marine fossil record. Science 215: 15011503.CrossRefGoogle ScholarPubMed
Sepkoski, J. J. Jr. 1981. A factor analytic description of the Phanerozoic marine fossil record. Paleobiology 7: 3654.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1984. A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology 10: 246267.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 1986. Phanerozoic overview of mass extinction. Pp. 277297 in Raup, D. M. and Jablonski, D., eds. Patterns and processes in the history of life. Springer, Berlin.CrossRefGoogle Scholar
Sepkoski, J. J. Jr. 2002. A compendium of fossil marine animal genera. Bulletins of American Paleontology 363: 1560.Google Scholar
Van Valen, L. M. 1984. A resetting of Phanerozoic community evolution. Nature 307: 5052.CrossRefGoogle Scholar
Wagner, P. J., Kosnik, M. A., and Lidgard, S. 2006. Abundance distributions imply elevated complexity of post-Paleozoic marine ecosystems. Science 314: 12891292.CrossRefGoogle ScholarPubMed
Wang, S. C. 2003. On the continuity of background and mass extinction. Paleobiology 29: 455467.2.0.CO;2>CrossRefGoogle Scholar
Webb, T. J., and Gaston, K. J. 2000. Geographic range size and evolutionary age in birds. Proceedings of the Royal Society of London B 267: 18431850.CrossRefGoogle ScholarPubMed