Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T11:39:05.310Z Has data issue: false hasContentIssue false

Taphonomic bias and time-averaging in tropical molluscan death assemblages: differential shell half-lives in Great Barrier Reef sediment

Published online by Cambridge University Press:  08 April 2016

Matthew A. Kosnik
Affiliation:
School of Marine and Tropical Biology, James Cook University, Townsville, Queensland 4811, Australia
Quan Hua
Affiliation:
Australian Nuclear Science and Technology Organisation, PMB 1, Menai, New South Wales 2234, Australia. E-mail: qhx@ansto.gov.au
Darrell S. Kaufman
Affiliation:
Department of Geology, Northern Arizona University, Flagstaff, Arizona 86011-4099, E-mail: Darrell.Kaufman@nau.edu
Raphael A. Wüst
Affiliation:
School of Earth and Environmental Sciences, James Cook University, Townsville, Queensland 4811, Australia. E-mail: Raphael.Wust@jcu.edu.au

Abstract

Radiocarbon-calibrated amino acid racemization ages of 428 individually dated shells representing four molluscan taxa are used to quantify time-averaging and shell half-lives with increasing burial depth in the shallow-water carbonate lagoon of Rib Reef, central Great Barrier Reef, Australia. The top 20 cm of sediment contains a distinct, essentially modern assemblage. Shells recovered at depths from 25 to 125 cm are age-homogeneous and significantly older than the surface layer. Taxon age distributions within sedimentary layers indicate that the top 125 cm of lagoonal sediment is thoroughly mixed on a sub-century scale. The age distributions and shell half-lives of four taxa (Ethalia, Natica, Tellina, and Turbo) are found to be largely distinct. Shell half-lives do not coincide with any single morphological characteristic thought to infer greater durability, but they are strongly related to a combined durability score based on shell density, thickness, and shape. These results illustrate the importance of bioturbation in tropical sedimentary environments, indicate that age estimates in this depositional setting are sensitive to taxon choice, and quantify a taxon-dependent bias in shell longevity and death assemblage formation.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Best, M. M. R., Ku, T. C. W., Kidwell, S. M., and Walter, L. M. 2007. Carbonate preservation in shallow marine environments: unexpected role of tropical siliciclastics. Journal of Geology 115: 437–56.CrossRefGoogle Scholar
Bottjer, D. J., and Ausich, W. I. 1986. Phanerozoic development of tiering in soft substrata suspension-feeding communities. Paleobiology 12: 400–20.CrossRefGoogle Scholar
Bradshaw, C., and Scoffin, T. P. 2001. Differential preservation of gravel sized bioclasts in Apheid-versus Callianassid-bioturbated muddy reef sediments. Palaios 16:186191.Google Scholar
Carroll, M., Kowalewski, M., Simões, M. G., and Goodfriend, G. A. 2003. Quantitative estimates of time-averaging in terebratulid brachiopod shell accumulations from a modern tropical shelf. Paleobiology 29:381402.2.0.CO;2>CrossRefGoogle Scholar
Cooper, R. A., Maxwell, P. A., Crampton, J. S., Beu, A. G., Jones, C. M., and Marshall, B. A. 2006. Completeness of the fossil record: estimating losses due to body size. Geology 34:241244.CrossRefGoogle Scholar
Cummins, H., Powell, E. N., Stanton, R. J., and Staff, G. 1986. The rate of taphonomic loss in modern benthic habitats: how much of the potentially preservable community is preserved? Palaeogeography, Palaeoclimatology, Palaeoecology 52:291320.CrossRefGoogle Scholar
Cutler, A. H., and Flessa, K. W. 1990. Fossils out of sequence: computer simulations and strategies for dealing with stratigraphic disorder. Palaios 5:227235.CrossRefGoogle Scholar
Davies, D. J., Powell, E. N., and Stanton, R. J. Jr. 1989. Relative rates of shell dissolution and net sediment accumulation: a commentary: can shell beds form by the gradual accumulation of biogenic debris on the sea floor? Lethaia 22:207212.Google Scholar
Flessa, K. W. 1998. Well-traveled cockles: shell transport during the Holocene transgression of the southern North Sea. Geology 26:187190.Google Scholar
Flessa, K. W., and Brown, T. J. 1993. Selective solution of macroinvertebrate calcareous hard parts: a laboratory study. Lethaia 16:193205.CrossRefGoogle Scholar
Flessa, K. W., Cutler, A. H., and Meldahl, K. H. 1993. Time and taphonomy: quantitative estimates of time-averaging and stratigraphic disorder in a shallow marine habitat. Paleobiology 19:266286.Google Scholar
Glover, C. P., and Kidwell, S. M. 1993. Influence of organic matrix on the post-mortem destruction of molluscan shells. Journal of Geology 101:729747.CrossRefGoogle Scholar
Harper, E. M. 2000. Are calcitic layers an effective adaptation against shell dissolution in the Bivalvia? Journal of Zoology 251:179186.CrossRefGoogle Scholar
Hua, Q., Jacobsen, G. E., Zoppi, U., Lawson, E. M., Williams, A. A., and McGann, M. J. 2001. Progress in radiocarbon target preparation at the ANTARES AMS centre. Radiocarbon 43:275282.CrossRefGoogle Scholar
Hughen, K. A., Baillie, M. G. L., Bard, E., Bayliss, A., Beck, J. W., Bertrand, C., Blackwell, P. G., Buck, C. E., Burr, G., Cutler, K. B., Damon, P. E., Edwards, R. L., Fairbanks, R. G., Friedrich, M., Guilderson, T. P., Kromer, B., McCormac, F. G., Manning, S., Bronk Ramsey, C., Reimer, P. J., Reimer, R. W., Remmele, S., Southon, J. R., Stuiver, M., Talamo, S., Taylor, F. W., van der Plicht, J., and Weyhenmeyer, C. E. 2004. Marine04 marine radiocarbon age calibration, 0–26 Cal Kyr BP. Radiocarbon 46:10591086.Google Scholar
Kaufman, D. S., and Manley, W. F. 1998. A new procedure for determining DL amino acid ratios in fossils using reverse phase liquid chromatography. Quaternary Science Reviews 17:9871000.CrossRefGoogle Scholar
Kershaw, P. J., Swift, D. J., and Denoon, D. C. 1988. Evidence of recent sedimentation in the eastern Irish Sea. Marine Geology 85:114.Google Scholar
Kidwell, S. M. 2001. Preservation of species abundance in marine death assemblages. Science 294:11911194.CrossRefGoogle ScholarPubMed
Kidwell, S. M. 2002. Mesh-size effects on the ecological fidelity of death assemblages: a meta-analysis of molluscan live-dead studies. Geobios 35:107119.Google Scholar
Kidwell, S. M. 2005. Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science 307:914917.Google Scholar
Kidwell, S. M., Best, M. M. R., and Kaufman, D. S. 2005. Taphonomic trade-offs in tropical marine death assemblages: differential time-averaging, shell loss, and probable bias in siliciclastic vs. carbonate facies. Geology 33:729732.CrossRefGoogle Scholar
Kosnik, M. A., and Kaufman, D. S. 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for use in geochronology. II. Data screening. Quaternary Geochronology 3:328341.Google Scholar
Kosnik, M. A., Jablonski, D., Lockwood, R., Novak-Gottshall, P. M. 2006. Quantifying molluscan body size in evolutionary and ecological studies: maximizing the return on data-collection efforts. Palaios 21:588697.Google Scholar
Kosnik, M. A., Hua, Q., Jacobsen, G. E., Kaufman, D. S., Wüst, R. A. 2007. Sediment mixing and stratigraphic disorder revealed by the age-structure of Tellina shells in Great Barrier Reef sediment. Geology 35:811814.Google Scholar
Kosnik, M. A., Kaufman, D. S., and Hua, Q. 2008. Identifying outliers and assessing the accuracy of amino acid racemization measurements for use in geochronology. I. Age calibration curves. Quaternary Geochronology 3:308327.Google Scholar
Kowalewski, M. 1996. Time-averaging, overcompleteness, and the fossil record. Journal of Geology 104:317326.Google Scholar
Kowalewski, M., Goodfriend, G. A., and Flessa, K. W. 1998. The high-resolution estimates of temporal mixing in shell beds: the evils and virtues of time-averaging. Paleobiology 24:287304.Google Scholar
Kowalewski, M., Serrano, G. E. A., Flessa, K. W., and Goodfriend, G. A. 2000. Dead delta's former productivity: two trillion shells at the mouth of the Colorado River. Geology 28:10591062.Google Scholar
Martin, R. E., Wehmiller, J. F., Harris, M. S., and Liddell, W. D. 1996. Comparative taphonomy of bivalves and foraminifera from Holocene tidal flat sediments, Bahía la Choya, Sonora, Mexico (Northern Gulf of California): taphonomic grades and temporal resolution. Paleobiology 22:8090.Google Scholar
Meldahl, K. H. 1987. Sedimentologic and taphonomic implications of biogenic stratification. Palaios 2:350358.Google Scholar
Meldahl, K. H., Flessa, K. W., and Cutler, A. H. 1997. Time-averaging and postmortem skeletal survival in benthic fossil assemblages: quantitative comparisons among Holocene environments. Paleobiology 23:207229.Google Scholar
Olszewski, T. D. 2004. Modeling the influence of taphonomic destruction, reworking, and burial on time-averaging in fossil accumulations. Palaios 19:3950.2.0.CO;2>CrossRefGoogle Scholar
Patterson, W. P., and Walter, L. M. 1994. Syndepositional diagenesis of modern platform carbonates: evidence from isotopic and minor element data. Geology 22:127130.Google Scholar
Perry, C. T. 1998. Grain susceptibility to the effects of microboring: implications for the preservation of skeletal carbonates. Sedimentology 45:3951.Google Scholar
R Development Core Team. 2008. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. http://www.R-project.org.Google Scholar
Sanders, D. 2003. Syndepositional dissolution of calcium carbonate in neritic carbonate environments: a geological recognition, processes, potential significance. Journal of African Earth Sciences 36:99134.CrossRefGoogle Scholar
Stuiver, M., Reimer, P. J., Bard, E., Beck, J. W., Burr, G. S., Hughen, K. A., Kromer, B., McCormac, G., van der Plicht, J., and Spurk, M. 1998. INTCAL 98 radiocarbon age calibration, 24,000–0 cal BP. Radiocarbon 40:10411083.CrossRefGoogle Scholar
Tudhope, A. W. 1989. Shallowing upwards sedimentation in a coral reef lagoon, Great Barrier Reef of Australia. Journal of Sedimentary Petrology 59:10361051.Google Scholar
Tudhope, A. W., and Risk, M. J. 1985. The rate of dissolution of carbonate sediments by microboring organisms, Davies reef, Australia. Journal of Sedimentary Petrology 55:400447.Google Scholar
Tudhope, A. W., and Scoffin, T. P. 1984. The effects of Callianassa bioturbation on the preservation of carbonate grains in Davies reef lagoon, Great Barrier Reef, Australia. Journal of Sedimentary Petrology 54:10911096.Google Scholar
Walbran, P. D. 1996. 210Pb and 14C as indicators of Callianassid bioturbation in coral reef sediment. Journal of Sedimentary Research 66:259264.Google Scholar
Walbran, P. D., Henderson, R. A., Faithful, J. W., Polach, H. A., Sparks, R. J., Wallace, G., and Lowe, D. C. 1989. Crown-of-thorn starfish outbreaks on the Great Barrier Reef: a geological perspective based on the sediment record. Coral Reefs 8:6778.CrossRefGoogle Scholar
Walter, L. M., and Burton, E. A. 1990. Dissolution of recent platform carbonate sediments in marine pore fluids. American Journal of Science 290:601643.Google Scholar
Wright, P., Cherns, L., and Hodges, P. 2003. Missing molluscs: field testing taphonomic loss in the Mesozoic through early large-scale aragonite dissolution. Geology 31:211214.2.0.CO;2>CrossRefGoogle Scholar
Zuschin, M., and Stanton, R. J. Jr. 2001. Experimental measures of shell strength and its taphonomic implications. Palaios 16:161170.Google Scholar
Supplementary material: PDF

Kosnik et al. supplementary material

Supplementary Material

Download Kosnik et al. supplementary material(PDF)
PDF 1.1 MB