Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-25T07:12:21.820Z Has data issue: false hasContentIssue false

Titanosaurs and the origin of “wide-gauge” trackways: a biomechanical and systematic perspective on sauropod locomotion

Published online by Cambridge University Press:  20 May 2016

Jeffrey A. Wilson
Affiliation:
Department of Organismal Biology and Anatomy, University of Chicago, 1027 East Fifty-seventh Street, Chicago, Illinois 60637. E-mail: jawilson@midway.uchicago.edu and mcarrano@midway.uchicago.edu
Matthew T. Carrano
Affiliation:
Department of Organismal Biology and Anatomy, University of Chicago, 1027 East Fifty-seventh Street, Chicago, Illinois 60637. E-mail: jawilson@midway.uchicago.edu and mcarrano@midway.uchicago.edu

Abstract

Two major ichnotypes of sauropod trackways have been described: “narrow-gauge,” in which both manus and pes prints approach or intersect the trackway midline, and “wide-gauge,” in which these prints are well apart from the midline. This gauge disparity could be the result of differences in behavior, body size, or morphology between the respective trackmakers. However, the biomechanics of locomotion in large terrestrial vertebrates suggest that sauropods were probably restricted in locomotor behavior, and the lack of systematic size differences between footprint gauges argues against body-size-related influences. We argue that skeletal morphology is responsible for gauge differences and integrate data from locomotor biomechanics and systematics with the track record to predict the hindlimb morphology of wide-gauge trackmakers. Broader foot stances in large, graviportal animals entail predictable mechanical consequences and hindlimb modifications. These could include outwardly angled femora, offset knee condyles, and a more eccentric femoral midshaft cross-section. A survey of sauropod hindlimb morphology reveals that these features are synapomorphies of titanosaurs, suggesting that they were the makers of wide-gauge trackways. The temporal and geographic distribution of titanosaurs is consistent with this hypothesis because wide-gauge trackways predominate during the Cretaceous and are found worldwide. Additional appendicular synapomorphies of titanosaurs are interpreted in light of identifying these animals as wide-gauge trackmakers. We suggest that titanosaurs may have used a bipedal stance more frequently than did other sauropods. These correlations between ichnology, biomechanics, and systematics imply that titanosaurs were unique among sauropods in having a more varied repertoire of locomotor habits.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Alexander, R. M. 1976. Estimates of speeds of dinosaurs. Nature 261: 129130.Google Scholar
Alexander, R. M. 1985. Mechanics of posture and gait of some large dinosaurs. Zoological Journal of the Linnean Society 83: 125.CrossRefGoogle Scholar
Bakker, R. T. 1971. Ecology of the brontosaurs. Nature 229: 172174.Google Scholar
Bakker, R. T. 1978. Dinosaur feeding behaviour and the origin of flowering plants. Nature 274: 661663.Google Scholar
Biewener, A. A. 1989. Scaling body support in mammals: limb posture and muscle mechanics. Science 245: 4548.Google Scholar
Biewener, A. A. 1990a. Biomechanics of mammalian terrestrial locomotion. Science 250: 10971103.Google Scholar
Biewener, A. A. 1990b. Mammalian terrestrial locomotion and size: mechanical design principles define limits. Bioscience 39: 776783.CrossRefGoogle Scholar
Borsuk-Bialynicka, M. 1977. A new camarasaurid sauropod Opisthocoelicaudia skarzynskii, gen.n. sp.n. from the Upper Cretaceous of Mongolia. Palaeontologica Polonica 37: 4564.Google Scholar
Calvo, J. O. and Salgado, L. 1995. Rebbachisaurus tessonei sp. nov. a new Sauropoda from the Albian-Cenomanian of Argentina: new evidence on the origin of the Diplodocidae. Gaia 11: 1333.Google Scholar
Carrano, M. T. 1998. The evolution of dinosaur locomotion: functional morphology, biomechanics, and modern analogs. Ph.D. dissertation. University of Chicago, Chicago.Google Scholar
Coombs, Walter P. Jr. 1975. Sauropod habits and habitats. Palaeogeography, Palaeoclimatology, Palaeoecology 17: 133.Google Scholar
Dodson, P. and Farlow, J. O. 1997. The forelimb carriage of ceratopsid dinosaurs. 393398. in Wolberg, D. L., Stump, E., Rosenberg, G. eds. DinoFest International: proceedings of a symposium held at Arizona State University. Academy of Natural Sciences, Philadelphia.Google Scholar
Farlow, J. O. 1989. Ostrich footprints and trackways: implications for dinosaur ichnology. pp. 243248in. Gillette and Lockley 1989.Google Scholar
Farlow, J. O. 1992. Sauropod tracks and trackmakers: integrating the ichnological and skeletal records. Zubía 10: 89138.Google Scholar
Farlow, J. O. 1997. Intraspecific and interspecific variability in foot and footprint shapes in ground birds: implications for the ichnology of bipedal dinosaurs. Journal of Vertebrate Paleontology 17: 45A.Google Scholar
Farlow, J. O. 1998. An ornithological squint at three-toed dinosaur footprints. P. 14in Wolberg, D. L., Gittis, K.Miller, S., Carey, L., Raynor, A. eds. DinoFest International: proceedings of a symposium held at the Academy of Natural Sciences, Philadelphia. Academy of Natural Sciences, Philadelphia.Google Scholar
Farlow, J. O., Pittman, J. G., and Hawthorne, J. M. 1989. Brontopodus birdi, Lower Cretaceous dinosaur footprints from the U.S. Gulf Coastal Plain. pp. 371394in. Gillette and Lockley 1989.Google Scholar
Galton, P. M. 1990. Basal Sauropodomorpha—Prosauropoda. pp. 320344in Weishampel, D. B., Dodson, P., Osmólska, H. eds. The Dinosauria. University of California Press, Berkeley Los Angeles.Google Scholar
Gatesy, S. M. and Middleton, K. M. 1996. Sinking dinosaurs: sub-surface preservation of foot kinematics in Greenlandic dinosaurs. Journal of Vertebrate Paleontology 16: 37A.Google Scholar
Gauthier, J. 1986. Saurischian monophyly and the origin of birds. In Padian, K. ed. The origin of birds and the evolution of flight. Memoirs of the California Academy of Sciences San Francisco. 8: 147.Google Scholar
Gillette, D. D.Lockley, M. G. eds. Dinosaur tracks and traces. Cambridge University Press, Cambridge.Google Scholar
Gilmore, C. W. 1946. Reptilian fauna of the North Horn Formation of central Utah. United States Department of the Interior Professional Paper. 210-C: 2953.Google Scholar
Hatcher, J. B. 1901. Diplodocus (Marsh): its osteology, taxonomy, and probable habits, with a restoration of the skeleton. Memoirs of the Carnegie Museum 1: 163.CrossRefGoogle Scholar
Hildebrand, M. 1985. Walking and running. pp. 3857in Hildebrand, M., Bramble, D. M., Liem, K. F., Wake, D. B. eds. Functional vertebrate morphology. Belknap Press, Harvard University Press, Cambridge.CrossRefGoogle Scholar
Hitchcock, E. 1836. Ornithichnology—description of the foot marks of birds (Ornithichnites) on New Red Sandstone in Massachusetts. American Journal of Science 29: 307340.Google Scholar
Huene, Fvon 1932. Die fossil Reptil-Ordnung Saurischia, ihre Entwicklung und Geschichte. Monographen Geologie und Palaeontologie 1 4(1-2): 1361.Google Scholar
Hunt, A. P., Lockley, M. G., Lucas, S. G., and Meyer, C. A. 1994. The global sauropod fossil record. Gaia 10: 261279.Google Scholar
Jain, S. L. and Bandyopadhyay, S. 1997. New titanosaurid (Dinosauria: Sauropoda) from the Late Cretaceous of central India. Journal of Vertebrate Paleontology 17: 114136.Google Scholar
Janensch, W. 1961. Die Gliedmaszen und Gliedmaszengürtel der Sauropoden der Tendaguru-Schichten. Palaeontographica 3(Suppl. 7): 177235.Google Scholar
Jensen, J. A. 1988. A fourth new sauropod dinosaur from the Upper Jurassic of the Colorado Plateau and sauropod bipedalism. The Great Basin Naturalist 48: 121145.Google Scholar
Johnson, R. E. and Ostrom, J. H. 1995. The forelimb of Torosaurus and an analysis of the posture and gait of ceratopsian dinosaurs. pp. 205218in Thomason, J. J. ed. Functional morphology in vertebrate paleontology. Cambridge University Press, Cambridge.Google Scholar
Langston, W. Jr. 1974. Nonmammalian Comanchean tetrapods. Geoscience and Man 8: 77102.Google Scholar
Leonardi, G. 1987. Glossary and manual of tetrapod footprint palaeoichnology. Departamento Nacional da Produção Mineral Brasilia.Google Scholar
Lockley, M. G. 1986. Dinosaur tracks symposium signals a renaissance in vertebrate ichnology. Paleobiology 13: 246252.Google Scholar
Lockley, M. G. and Hunt, A. P. 1995a. Dinosaur tracks. Columbia University Press, New York.Google Scholar
Lockley, M. G. 1995b. Ceratopsian tracks and associated ichnofauna from the Laramie Formation (Upper Cretaceous: Maastrichtian) of Colorado. Journal of Vertebrate Paleontology 15: 592614.Google Scholar
Lockley, M. G., Farlow, J. O., and Meyer, C. A. 1994. Brontopodus and Parabrontopodus ichnogen. nov. and the significance of wide-and narrow-gauge sauropod trackways. Gaia 10: 135145.Google Scholar
Lockley, M. G., Meyer, C. A., Hunt, A. P., and Lucas, S. G. 1994. The distribution of sauropod tracks and trackmakers. Gaia 10: 233248.Google Scholar
Lockley, M. G., Meyer, C. A., and Santos, V. F. 1994. Trackway evidence for a herd of juvenile sauropods from the Late Jurassic of Portugal. Gaia 10: 2736.Google Scholar
Lull, R. S. 1915. Triassic life of the Connecticut Valley. Connecticut State Geological and Natural History Survey Bulletin 24: 1285.Google Scholar
McIntosh, J. S. 1990. Sauropoda. pp. 345401in Weishampel, D. B., Dodson, P., Osmólska, H. eds. The Dinosauria. University of California Press, Berkeley Los Angeles.Google Scholar
McIntosh, J. S., Miles, C. A., Cloward, K. C., and Parker, J. R. 1996. A new nearly complete skeleton of Camarasaurus. Bulletin of Gunma Museum of Natural History 1: 187.Google Scholar
McIntosh, J. S., Miller, W. E., Stadtman, K. L., and Gillette, D. D. 1996. The osteology of Camarasaurus lewisi. (Jensen, 1988). BYU Geology Studies 41: 73115.Google Scholar
Meyer, C. A. and Pittman, J. G. 1994. A comparison between the Brontopodus ichnofacies of Portugal, Switzerland and Texas. Gaia 10: 125133.Google Scholar
Meyer, C. A., Lockley, M. G., Robinson, J. W., and Santos, V. F. 1994. A comparison of well-preserved sauropod tracks from the Late Jurassic of Portugal and the western United States: evidence and implications. Gaia 10: 5764.Google Scholar
Moratalla, J. J., García-Mondéjar, J., Santos, V. F., Lockley, M. G., Sanz, J. L., and Jiménez, S. 1994. Sauropod trackways from the Lower Cretaceous of Spain. Gaia 10: 7584.Google Scholar
Osborn, H. F. and Mook, C. C. 1921. Camarasaurus, Amphicoelias, and other sauropods of Cope. Memoirs of the American Museum of Natural History 3: 247387.Google Scholar
Padian, K. and Olsen, P. E. 1989. Ratite footprints and the stance and gait of Mesozoic theropods. pp. 231241in Gillette, and Lockley, 1989.Google Scholar
Peczkis, J. 1994. Implications of body-mass estimates for dinosaurs. Journal of Vertebrate Paleontology 14: 520533.Google Scholar
Pittman, J. G. 1989. Stratigraphy, lithology, depositional environment, and track type of dinosaur trackbearing beds of the Gulf Coastal Plain. pp. 135154in Gillette, and Lockley, 1989.Google Scholar
Powell, J. E. 1986. Revision de los titanosauridos de America del Sur. Ph.D. dissertation. Universidad Nacional de Tucumán, Facultad de Ciencias Naturales, Tucumán Argentina.Google Scholar
Powell, J. E. 1992. Osteologia de Saltasaurus loricatus (Sauropoda—Titanosauridae) del Cretácico Superior del noroeste Argentino. pp. 165230in Sanz, J. L., Buscalioni, A. D. eds. Los Dinosaurios y Su Entorno Biótico. Actas del Segundo Curso de Paleontología in Cuenca, Institutio “Juan de Valdes,” Cuenca Spain.Google Scholar
Salgado, L. and Calvo, J. O. 1997. Evolution of titanosaurid sauropods. II: The cranial evidence. Ameghiniana. 34: 3348.Google Scholar
Salgado, L., Coria, R. A., and Calvo, J. O. 1997. Evolution of titanosaurid sauropods. I: Phylogenetic analysis based on the postcranial evidence. Ameghiniana. 34: 332.Google Scholar
Schulp, A. S. and Brokx, W. A. In press. Maastrichtian sauropod footprints from the Fumanya site, Berguedà Spain. Ichnos.Google Scholar
Sereno, P. C., Forster, C. A., Rogers, R. R., and Monetta, A. M. 1993. Primitive dinosaur skeleton from Argentina and the early evolution of Dinosauria. Nature 361: 6466.Google Scholar
Thulborn, R. A. 1982. Speeds gaits of dinosaurs. Palaeogeography, Palaeoclimatology, Palaeoecology 38: 227256.Google Scholar
Thulborn, R. A. 1989. The gaits of dinosaurs. pp. 3950in Gillette, and Lockley, 1989.Google Scholar
Thulborn, R. A. and Wade, M. 1989. A footprint as a history of movement. pp. 5156in Gillette, and Lockley, 1989.Google Scholar
Upchurch, P. 1994. Manus claw function in sauropod dinosaurs. Gaia 10: 161172.Google Scholar
Upchurch, P. 1995. The evolutionary history of sauropod dinosaurs. Philosophical Transactions of the Royal Society of London B 349: 365390.Google Scholar
Wilson, J. A. and Sereno, P. C. 1998. Early evolution and higher-level phylogeny of sauropod dinosaurs. Society of Vertebrate Paleontology Memoir 5: 168. (Suppl. to Journal of Vertebrate Paleontology 18[2]).Google Scholar
Wilson, J. A. and Smith, M. 1996. New remains of Amphicoelias Cope (Dinosauria: Sauropoda) and diplodocoid phylogeny. Journal of Vertebrate Paleontology 16: 73A.Google Scholar
Wilson, J. A., Martinez, R. N., and Alcober, O.In press. Distal portion of the tail of a titanosaur from the Upper Cretaceous of Mendoza. Argentina. Journal of Vertebrate Paleontology.Google Scholar