Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-26T12:27:42.994Z Has data issue: false hasContentIssue false

The application of an oxygen isotope aridity index to terrestrial paleoenvironmental reconstructions in Pleistocene North America

Published online by Cambridge University Press:  07 August 2013

Lindsey T. Yann
Affiliation:
Department of Earth and Environmental Sciences, Vanderbilt University, PMB 351805, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1085, U.S.A E-mail: lindsey.t.yann@vanderbilt.edu
Larisa R. G. DeSantis*
Affiliation:
Department of Earth and Environmental Sciences, Vanderbilt University, PMB 351805, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1085, U.S.A E-mail: larisa.desantis@vanderbilt.edu
Ryan J. Haupt
Affiliation:
Department of Earth and Environmental Sciences, Vanderbilt University, PMB 351805, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1085, U.S.A
Jennifer L. Romer
Affiliation:
Department of Earth and Environmental Sciences, Vanderbilt University, PMB 351805, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1085, U.S.A
Sarah E. Corapi
Affiliation:
Department of Earth and Environmental Sciences, Vanderbilt University, PMB 351805, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1085, U.S.A
David J. Ettenson
Affiliation:
Department of Earth and Environmental Sciences, Vanderbilt University, PMB 351805, 2301 Vanderbilt Place, Nashville, Tennessee 37235-1085, U.S.A
*
Corresponding author.

Abstract

Geochemical tools, including the analysis of stable isotopes from fossil mammals, are often used to infer regional climatic and environmental differences. We have further developed an oxygen isotope aridity index and used oxygen (δ18O) isotope values and carbon (δ13C) isotope values to assess regional climatic differences between the southeastern and southwestern United States during the Pleistocene. Using data collected from previously published studies, we assigned taxa to evaporation-sensitivity categories by quantifying the frequency and magnitude of aridity index values (i.e., an average taxon δ18O value minus a site specific proboscidean δ18O value). Antilocapridae, Camelidae, Equidae, and Cervidae were identified as evaporation-sensitive families, meaning that a majority of their water comes from the food they eat, thus indicating that they are more likely to capture changing climatic conditions. Bovidae, Tayassuidae, and Tapiridae were identified as less sensitive families, possibly because of increased or more variable drinking behavior. While it is difficult to tease out individual influences on δ18O values in tooth enamel, the use of an aridity index will provide a more in-depth look at relative aridity in the fossil record. Greater aridity index values in the Southwest suggest a drier climate than in the Southeast during the Pleistocene, and δ13C values suggest that diet does not determine evaporation sensitivity. The combination of more-positive δ13C values and the lack of forest indicator taxa in the Southwest suggest that landscapes were more open than in the Southeast. Inferred higher aridity in the Southwest may indicate that aridity or seasonal aridity/precipitation, not temperature or pCO2, was a greater driver of C4 abundance during the Pleistocene. Collectively, these data suggest that regional climatic and environmental interpretations can be improved by using an aridity index and a more detailed understanding of mammalian paleobiology.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Ayliffe, L. K., and Chivas, A. R. 1990. Oxygen isotope composition of the bone phosphate of Australian kangaroos: potential as a palaeoenvironmental recorder. Geochimica et Cosmochimica Acta 54:26032609.CrossRefGoogle Scholar
Bender, M. M. 1971. Variations in the 13C/12C ratios of plants in relation to the pathway of photosynthetic carbon dioxide fixation. Phytochemistry 10:12391244.CrossRefGoogle Scholar
Biedinger, R., and Lushine, J. B. 1993. Duration of the summer season in south Florida. NOAA/NWS. http://www.srh.noaa.gov/mfl/?n=summer_season.Google Scholar
Bowen, G. J. 2013. The online isotopes in precipitation calculator, Version 2.2. http://www.waterisotopes.org.Google Scholar
Bowen, G. J., and Revenaugh, J. 2003. Interpolating the isotopic composition of modern meteoric precipitation. Water Resources Research 39:1299.CrossRefGoogle Scholar
Bryant, D. J., Luz, B., and Froelich, P. N. 1994. Oxygen isotopic composition of fossil horse tooth phosphate as a record of continental paleoclimate. Palaeogeography, Palaeoclimatology, Palaeoecology 107:303316.CrossRefGoogle Scholar
Cerling, T. E., and Harris, J. M. 1999. Carbon isotope fractionation between diet and bioapatite in ungulate mammals and implications for ecological and paleoecological studies. Oecologia 120:347363.CrossRefGoogle ScholarPubMed
Cerling, T. E., Harris, J. M., MacFadden, B. J., Leakey, M. G., Quade, J., Eisenmann, V., and Ehleringer, J. R. 1997. Global vegetation change through the Miocene/Pliocene boundary. Nature 389:153158.CrossRefGoogle Scholar
Clementz, M. T., Holroyd, P. A., and Koch, P. L. 2008. Identifying aquatic habits of herbivorous mammals through stable isotope analysis. Palaios 23:574585.CrossRefGoogle Scholar
Connin, S. L., Betancourt, J., and Quade, J. 1998. Late Pleistocene C4 plant dominance and summer rainfall in the southwestern United States from isotopic study of herbivore teeth. Quaternary Research 50:179193.CrossRefGoogle Scholar
Cook, E. R., Woodhouse, C. A., Eakin, C. M., Meko, D. M., and Stahle, D. W. 2004. Long-term aridity changes in the western United States. Science 306:10151018.CrossRefGoogle ScholarPubMed
Cormie, A. B., Luz, B., and Schwarcz, H. P. 1994. Relationship between the hydrogen and oxygen isotopes of deer bone and their use in the estimation of relative humidity. Geochimica et Cosmochimica Acta 58:34393449.CrossRefGoogle Scholar
Criss, R. E. 1999. Principles of stable isotope distribution. Oxford University Press, Oxford.CrossRefGoogle Scholar
Dansgaard, W. 1954. The O18-abundance in fresh water. Geochimica Cosmochimica Acta 6:241260.CrossRefGoogle Scholar
Dansgaard, W. 1964. Stable isotopes in precipitation. Tellus 16:436468.CrossRefGoogle Scholar
Delcourt, H. R. 2002. Forests in peril: tracking deciduous trees from ice-age refuges into the greenhouse world. McDonald and Woodward, Blacksburg, Va.Google Scholar
DeSantis, L. R. G., and MacFadden, B. J. 2007. Identifying forested environments in deep time using fossil tapirs: evidence from evolutionary morphology and stable isotopes. Courier Forschungsinstitut Senckenberg 258:147157.Google Scholar
DeSantis, L. R. G., Feranec, R. S., and MacFadden, B. J. 2009. Effects of global warming on ancient mammalian communities and their environments. PLoS ONE 4 (6):e5750.CrossRefGoogle ScholarPubMed
Douglas, M. W., Maddox, R. A., and Howard, K. 1993. The Mexican monsoon. Journal of Climate 6:1665.2.0.CO;2>CrossRefGoogle Scholar
Ehleringer, J. R. 1989 Carbon isotope ratios and physical processes in aridland plants. Pp. 4154inRundel, P. W., Ehleringer, J. R., and Nagy, K. A., eds. Stable isotopes in ecological research. Springer, New York.CrossRefGoogle Scholar
Epstein, H. E., Lauenroth, W. K., Burke, I. C., and Coffin, D. P. 1999. Productivity patterns of C3 and C4 functional types in the U.S. Great Plains. Ecology 78:722731.Google Scholar
Epstein, S., and Mayeda, T. 1953. Variations of O18 content of waters from natural sources. Geochimica et Cosmochimica Acta 4:213224.CrossRefGoogle Scholar
Feranec, R. S., and MacFadden, B. J. 2000. Evolution of the grazing niche in Pleistocene mammals from Florida: evidence from stable isotopes. Palaeogeography, Palaeoclimatology, Palaeoecology 162:155169.CrossRefGoogle Scholar
Friedman, I., and O'Neil, J. R. 1977. Compilation of stable isotope fractionation factors of geochemical interest. Geological Survey Professional Paper 440(KK):KK1–KK12.CrossRefGoogle Scholar
Graham, R. W. 1976. Late Wisconsin mammalian faunas and environmental gradients of the eastern United States. Paleobiology 2:343350.CrossRefGoogle Scholar
Higgins, R. W., Yao, Y. and Wang, X. L. 1997. Influence of the North American monsoon system on the U.S. summer precipitation regime. Journal of Climate 10:26002622.2.0.CO;2>CrossRefGoogle Scholar
Holmgren, C. A., Norris, J., and Betancourt, J. L. 2007. Inferences about winter temperatures and summer rains from the late Quaternary record of C4 perennial grasses and C3 desert shrubs in the northern Chihuahuan Desert. Journal of Quaternary Science 22:141161.CrossRefGoogle Scholar
Holman, J. A. 1980. Paleoclimatic implications of Pleistocene herpetofauna of eastern and central North America. Transactions of the Nebraska Academy of Sciences Paper 286.Google Scholar
Honey, J. G., Harrison, J. A., Prothero, D. R., and Stevens, M. S. 1998. Camelidae. Pp. 439462in Janis et al. 1998.CrossRefGoogle Scholar
Hoppe, K. A. 2004. Late Pleistocene mammoth herd structure, migration patterns, and Clovis hunting strategies inferred from isotopic analyses of multiple death assemblages. Paleobiology 30:129145.2.0.CO;2>CrossRefGoogle Scholar
Hoppe, K. A., Amundson, R., Vavra, M., McClaran, M. P., and Anderson, D. L. 2004. Isotopic analysis of tooth enamel carbonate from modern North American feral horses: implications for paleoenvironmental reconstructions. Palaeogeography, Palaeoclimatology, Palaeoecology 203:299311.CrossRefGoogle Scholar
Hoppe, K. A., Stuska, S., and Amundson, R. 2005. The implications for paleodietary and paleoclimatic reconstructions of intrapopulation variability in the oxygen and carbon isotopes of teeth from modern feral horses. Quaternary Research 64:138146.CrossRefGoogle Scholar
Huang, Y., Street-Perrott, F. A., Metcalfe, S. E., Brenner, M., Moreland, M., and Freeman, K. 2001. Climate change as the dominant control on glacial–interglacial variations in C3 and C4 plant abundance. Science 293:6471651.CrossRefGoogle ScholarPubMed
Janis, C. M., and Manning, E. 1998. Antilocapridae. Pp. 491507in Janis et al. 1998.CrossRefGoogle Scholar
Janis, C. M., Scott, K. M., and Jacobs, L. L., eds. 1998. Evolution of Tertiary mammals of North America, Vol. 1. Terrestrial carnivores, ungulates, and ungulatelike mammals. Cambridge University Press, Cambridge.Google Scholar
Jordan, D. B., and Ogren, W. L. 1984. The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase. Planta 161:308313.CrossRefGoogle ScholarPubMed
Karl, T., and Koss, W. J. 1984. National climatic data: regional and national monthly, seasonal, and annual temperature weighted by area, 1895–1983. National Climatic Data Center, Asheville, N.C.Google Scholar
Kemp, P. R. 1983. Phenological patterns of Chihuahuan desert plants in relation to the timing of water availability. Journal of Ecology 71:427436.CrossRefGoogle Scholar
Koch, P. L., Tuross, N., and Fogel, M. L. 1997. The effects of sample treatment and diagenesis on the isotopic integrity of carbonate in biogenic hydroxylapatite. Journal of Archaeological Science 24:417429.CrossRefGoogle Scholar
Koch, P. L., Hoppe, K. A., and Webb, S. D. 1998. The isotopic ecology of late Pleistocene mammals in North America, Part 1. Florida. Chemical Geology 152:119138.CrossRefGoogle Scholar
Koch, P. L., Diffenbaugh, N. S., and Hoppe, K. A. 2004. The effects of late Quaternary climate and pCO2 change on C4 plant abundance in the south-central United States. Palaeogeography, Palaeoclimatology, Palaeoecology 207:331357.CrossRefGoogle Scholar
Kohn, M. J. 1996. Predicting animal δ18O: accounting for diet and physiological adaptation. Geochimica et Cosmochimica Acta 60:48114829.CrossRefGoogle Scholar
Kohn, M. J., and Cerling, T. E. 2002. Stable isotope compositions of biological apatite. InKohn, M. J., Rakovan, J., and Hughes, J. M., eds. Phosphates: geochemical, geobiological, and materials importance. Reviews in Mineralogy and Geochemistry 48:455488. Mineralogical Society of America, Washington, D.C.CrossRefGoogle Scholar
Kohn, M. J., Schoeninger, M. J., and Valley, J. W. 1996. Herbivore tooth oxygen isotope compositions: effects of diet and physiology. Geochimica et Cosmochimica Acta 60:38893896.CrossRefGoogle Scholar
Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R., Hutterli, M. A., Stocker, T. F., Ruth, U., Steffensen, J. P., and Maggi, V. 2008. Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature 452:616619.CrossRefGoogle Scholar
Lambert, W. D., and Shoshani, J. 1998. Proboscidea. Pp. 606621in Janis et al. 1998.CrossRefGoogle Scholar
LaMoreaux, H. K., Brook, G. A., and Knox, J. A. 2009. Late Pleistocene and Holocene environments of the Southeastern United States from the stratigraphy and pollen content of a peat deposit on the Georgia Coastal Plain. Palaeogeography, Palaeoclimatology, Palaeoecology 280:300312.CrossRefGoogle Scholar
Leigh, D. S., and Feeney, T. P. 1995. Paleochannels indicating wet climate and lack of response to lower sea level, southeast Georgia. Geology 23:687690.2.3.CO;2>CrossRefGoogle Scholar
Levin, N. E., Cerling, T. E., Passey, B. H., Harris, J. M., and Ehleringer, J. R. 2006. A stable isotope aridity index for terrestrial environments. Proceedings of the National Academy of Science USA 103:1120111205.CrossRefGoogle ScholarPubMed
Longinelli, A. 1984. Oxygen isotopes in mammal bone phosphate: a new tool for paleohydrological and paleoclimatological research? Geochimica et Cosmochimica Acta 48:385390.CrossRefGoogle Scholar
Luz, B., Kolodny, Y., and Horowitz, M. 1984. Fractionation of oxygen isotopes between mammalian bone-phosphate and environmental drinking water. Geochimica et Cosmochimica Acta 48:16891693.CrossRefGoogle Scholar
Marshall, L. G., Webb, S. D., Sepkoski, J. J. Jr., and Raup, D. M. 1982. Mammalian Evolution and the Great American Interchange. Science 215:13511357.CrossRefGoogle ScholarPubMed
Metcalfe, S. E., O'Hara, S. L., Caballero, M., and Davies, S. J. 2000. Records of late Pleistocene–Holocene climatic change in Mexico: a review. Quaternary Science Reviews 19:699721.CrossRefGoogle Scholar
Metcalfe, S., Say, A., Black, S., McCulloch, R., and O'Hara, S. 2002. Wet conditions during the last glaciation in the Chihuahuan Desert, Alta Babicora Basin, Mexico. Quaternary Research 57:91101.CrossRefGoogle Scholar
Monson, R., Littlejohn, R., and Williams, G. 1982. The quantum yield for CO2 uptake in C3 and C4 grasses. Photosynthesis Research 3:153159.CrossRefGoogle Scholar
Murphy, B. P., and Bowman, D. M. J. S. 2007. Seasonal water availability predicts the relative abundance of C3 and C4 grasses in Australia. Global Ecology and Biogeography 16:160169.CrossRefGoogle Scholar
Murphy, B. P., Bowman, D. M. J. S., and Gagan, M. K. 2007. The interactive effect of temperature and humidity on the oxygen isotope composition of kangaroos. Functional Ecology 21:757766.CrossRefGoogle Scholar
National Climatic Data Center. 2005a. Climate maps of the United States. “Lower 48 States, PRECIPITATION – Mean Total Precipitation (Annual).” [ESRI shapefile.]http://cdo.ncdc.noaa.gov/cgi-bin/climaps/climaps.pl.Google Scholar
National Climatic Data Center. 2005b. Climate Maps of the United States. “Lower 48 States, TEMPERATURE – Mean Daily Average Temperature (Annual).” [ESRI shapefile.]http://cdo.ncdc.noaa.gov/cgi-bin/climaps/climaps.pl.Google Scholar
Nunez, E. E., MacFadden, B. J., Mead, J. I., and Baez, A. 2010. Ancient forests and grasslands in the desert: diet and habitat of Late Pleistocene mammals from northcentral Sonora, Mexico. Palaeogeography, Palaeoclimatology, Palaeoecology 297:391400.CrossRefGoogle Scholar
Owen-Smith, R. N. 1988. Megaherbivores: the influence of very large body size on ecology. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Paruelo, J. M., and Lauenroth, W. 1996. Relative abundance of plant functional types in grasslands and shrublands of North America. Ecological Applications 6:12121224.CrossRefGoogle Scholar
Patnaik, R. 2003. Reconstruction of Upper Siwalik palaeoecology and palaeoclimatology using microfossil palaeocommunities. Palaeogeography, Palaeoclimatology, Palaeoecology 197:133150.CrossRefGoogle Scholar
Poage, M. A., and Chamberlain, C. P. 2001. Empirical relationships between elevation and the stable isotope composition of precipitation and surface waters: considerations for studies of paleoelevation change. American Journal of Science 301:115.CrossRefGoogle Scholar
Price, G. J., and Piper, K. J. 2009. Gigantism of the Australian Diprotodon Owen 1838 (Marsupialia, Diprotodontoidea) through the Pleistocene. Journal of Quaternary Science 24:10291038.CrossRefGoogle Scholar
Retallack, G. J. 2007. Cenozoic paleoclimate on land in North America. Journal of Geology 115:271294.CrossRefGoogle Scholar
Russell, D. A., Rich, F. J., Schneider, V., and Lynch-Stieglitz, J. 2009. A warm thermal enclave in the late Pleistocene of the south-eastern United States. Biological Reviews 84:173202.CrossRefGoogle ScholarPubMed
Secord, R., Bloch, J. I., Chester, S. G. B., Boyer, D. M., Wood, A. R., Wing, S. L., Kraus, M. J., McInerney, F. A., and Krigbaum, J. 2012. Evolution of the earliest horses driven by climate change in the Paleocene–Eocene Thermal Maximum. Science 335:959962.CrossRefGoogle ScholarPubMed
Smith, G. A., Wang, Y., Cerling, T. E., and Geissman, J. W. 1993. Comparison of a paleosol-carbonate isotope record to other records of Pliocene–early Pleistocene climate in the western United States. Geology 21:691694.2.3.CO;2>CrossRefGoogle Scholar
Spaulding, W. G., and Graumlich, L. J. 1986. The last pluvial climatic episodes in the deserts of southwestern North America. Nature 320:441444.CrossRefGoogle Scholar
Stokke, S., and du Toit, J. T. 2002. Sexual segregation in habitat use by elephants in Chobe National Park, Botswana. African Journal of Ecology 40:360371.CrossRefGoogle Scholar
van der Merwe, N. J., and Medina, E. 1991. The canopy effect, carbon isotope ratios and foodwebs in Amazonia. Journal of Archaeological Science 18:249259.CrossRefGoogle Scholar
Van Devender, T. R., and Spaulding, W. G. 1979. Development of vegetation and climate in the southwestern United States. Science 204:701710.CrossRefGoogle ScholarPubMed
Voorhies, M. R. 1974. Pleistocene vertebrates with boreal affinities in the Georgia Piedmont. Quaternary Research 4:8593.CrossRefGoogle Scholar
Walker, J. D., and Geissman, J. W., compilers. 2009. GSA geologic time scale. Geologic Society of America, Boulder, Colo.Google Scholar
Wilf, P. 2000. Late Paleocene-early Eocene climate changes in southwestern Wyoming: paleobotanical analysis. Geological Society of America Bulletin 112:292307.2.0.CO;2>CrossRefGoogle Scholar
Zachos, J., Pagani, M., Sloan, L., Thomas, E., and Billups, K. 2001. Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 292:686693.CrossRefGoogle ScholarPubMed