Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T13:16:50.239Z Has data issue: false hasContentIssue false

Identification and independence: morphometrics of Cenozoic New Zealand Spissatella and Eucrassatella (Bivalvia, Crassatellidae)

Published online by Cambridge University Press:  10 June 2013

Katie S. Collins
Affiliation:
Victoria University of Wellington, Post Office Box 600, Wellington, New Zealand. E-mail: katiesusannacollins@gmail.com
James S. Crampton
Affiliation:
GNS Science, Post Office Box 30368, Lower Hutt, New Zealand, and Victoria University of Wellington, Post Office Box 600, Wellington, New Zealand. E-mail: j.crampton@gns.cri.nz
Michael Hannah
Affiliation:
Victoria University of Wellington, Post Office Box 600, Wellington, New Zealand. E-mail: Michael.Hannah@vuw.ac.nz

Abstract

Fossil bivalve shells are well-suited for landmark/semilandmark morphometric analysis because they preserve both traces of the internal anatomy and the whole shell outline. Utilizing landmarks and semilandmarks, we have characterized internal and external shape variation in a monophyletic clade of Cenozoic New Zealand and Australian crassatellid bivalves, to test the contiguity in morphospace of species-level taxa and to quantitatively examine the “Concept of Independent Entities” of Yonge (1953). Thirteen species from two genera (Spissatella Finlay 1926 and Eucrassatella Iredale 1924) are investigated. Spissatella n. sp. C is confirmed as forming a contiguous group separate to S. trailli and S. clifdenensis. Shell outline and internal anatomy are found to covary in shape, refuting the “Concept of Independent Entities” in the study group.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Beesley, P. L., Ross, G. J. B., and Wells, A., eds. 1998. Mollusca: the southern synthesis. Fauna of Australia, Vol. 5. CSIRO Publishing, Melbourne.Google Scholar
Beu, A. G., Maxwell, P. A., and Brazier, R. C. 1990. Cenozoic Mollusca of New Zealand. New Zealand Geological Survey Palaeontological Bulletin 58:1518.Google Scholar
Bookstein, F. L. 1991. Morphometric tools for landmark data: geometry and biology. Cambridge University Press, Cambridge.Google Scholar
Bookstein, F. L. 1997. Landmark methods for forms without landmarks: morphometrics of group differences in outline shape. Medical Image Analysis 1:225243.CrossRefGoogle ScholarPubMed
Clouse, R. M., De Bivort, B. L., and Giribet, G. A. 2009. A phylogenetic analysis for the South-east Asian mite harvestman family Stylocellidae (Opiliones: Cyphophthalmi)—a combined analysis using morphometric and molecular data. Invertebrate Systematics 23:515529.CrossRefGoogle Scholar
Cooper, R. A. 2004. The New Zealand geological timescale. Institute of Geological and Nuclear Sciences Monograph 22.Google Scholar
Crampton, J. S., and Maxwell, P. A. 2000. Size: all it's shaped up to be? Evolution of shape through the lifespan of the Cenozoic bivalve Spissatella (Crassatellidae). Geological Society of London Special Publication 177:399423.CrossRefGoogle Scholar
Darragh, T. A. 1965. Revision of the species of Eucrassatella and Spissatella in the Tertiary of Victoria and Tasmania. Proceedings of the Royal Society of Victoria, new series 78:95114.Google Scholar
de Bivort, B. L., Clouse, R. M., and Giribet, G. A. 2010. A morphometrics-based phylogeny of the temperate Gondwanan mite harvestmen (Opiliones, Cyphophthalmi, Pettalidae). Journal of Zoological Systematics and Evolutionary Research 48:294309.CrossRefGoogle Scholar
Ezard, T. H. G., Pearson, P. N., and Purvis, A. 2010. Algorithmic approaches to aid species' delimitation in multidimensional morphospace. BMC Evolutionary Biology 10:175CrossRefGoogle ScholarPubMed
Fink, W. L., and Zelditch, M. L. 1995. Phylogenetic analysis of ontogenetic shape transformations: a reassessment of the piranha genus Pygocentrus (Teleostei). Systematic Biology 44:343360.CrossRefGoogle Scholar
Finlay, H. J. 1926. New shells from New Zealand Tertiary beds, Part 2. Transactions and Proceedings of the New Zealand Institute 56:227258.Google Scholar
Gunz, P., Mitteroecker, P., and Bookstein, F. L. 2005. Semilandmarks in three dimensions. Pp. 7398inSlice, D. E., ed. Modern morphometrics in physical anthropology. Kluwer Academic/Plenum, New York.CrossRefGoogle Scholar
Iredale, T. 1924. Results from Roy Bell's molluscan collections. Proceedings of the Linnean Society of New South Wales 49:179278.Google Scholar
Jackson, D. A. 1993. Stopping rules in principal components analysis: a comparison of heuristical and statistical approaches. Ecology 74:22042214.CrossRefGoogle Scholar
Klingenberg, C. P., and Gidaszewski, N. A. 2010. Testing and quantifying phylogenetic signals and homoplasy in morphometric data. Systematic Biology 59:245261.CrossRefGoogle ScholarPubMed
Monteiro, L. R., Beneditto, A. P. M. D., Guillermo, L. H., and Rivera, L. A. 2005. Allometric changes and shape differentiation of sagitta otoliths in sciaenid fishes. Fisheries Research 74:288299.CrossRefGoogle Scholar
Newell, N. D. 1956. Fossil populations. InSylvester-Bradley, P. C., ed. The species concept in paleontology. Systematics Association Special Publication 2:6382.Google Scholar
Perez, S. I., Bernal, V., and Gonzalez, P. N. 2006. Differences between sliding semi-landmark methods in geometric morphometrics, with an application to human craniofacial and dental variation. Journal of anatomy 208:769784.CrossRefGoogle ScholarPubMed
R Core Development Team. 2012. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.Google Scholar
Savazzi, E. 1990. Biological aspects of theoretical shell morphology. Lethaia 23:195212.CrossRefGoogle Scholar
Scott, G. H. 1980. The value of outline processing in the biometry and systematics of fossils. Palaeontology 23:757768.Google Scholar
Spencer, H. G., Marshall, B. A., Maxwell, P. A., Grant-Mackie, J. A., Stilwell, J. D., Willan, R. C., Campbell, H. J., Crampton, J. S., Henderson, R. A., Bradshaw, M. A., Waterhouse, J. B., and Pojeta, J. J. 2009. Phylum Mollusca. Pp. 161254inGordon, D. P., ed. New Zealand inventory of biodiversity, Vol. 1. Kingdom Animalia: Radiata, Lophotrochozoa, Deuterostomia. Canterbury University Press, Christchurch.Google Scholar
Stanley, S. M. 1970. Relation of shell form to life habits of the Bivalvia (Mollusca). Geological Society of America Memoir 125.CrossRefGoogle Scholar
Stanley, S. M. 1975. Why clams have the shape they have: an experimental analysis of burrowing. Paleobiology 1:4858.CrossRefGoogle Scholar
Stasek, C. R. 1963. Orientation and form in the bivalved Mollusca. Journal of Morphology 112:195214.CrossRefGoogle Scholar
Thompson, d'A. W. 1942. On growth and form. The University Press, Cambridge.Google Scholar
Webster, M., and Sheets, H. D. 2010. A practical introduction to landmark-based geometric morphometrics. InAlroy, J. and Hunt, G., eds. Quantitative methods in paleobiology. Paleontological Society Papers 16:163188.CrossRefGoogle Scholar
Yonge, C. M. 1953. The monomyarian condition in the Lamellibranchia. Transactions of the Royal Society of Edinburgh 62:443478.CrossRefGoogle Scholar
Zelditch, M. L., Bookstein, F. L., and Lundrigan, B. L. 1992. Ontogeny of integrated skull growth in the cotton rat Sigmodon fulviventer. Evolution 46:11641180.CrossRefGoogle ScholarPubMed
Zelditch, M. L., Sheets, H. D., and Fink, W. L. 2000. Spatiotemporal reorganization of growth rates in the evolution of ontogeny. Evolution 54:13631371.Google ScholarPubMed
Zelditch, M. L., Swiderski, D. L., Sheets, H. D., and Fink, W. L. 2004. Geometric morphometrics for biologists. Elsevier, Amsterdam.Google Scholar