Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-16T13:26:09.078Z Has data issue: false hasContentIssue false

Ontogenetic sequence reconstruction and sequence polymorphism in extinct taxa: an example using early tetrapods (Tetrapoda: Lepospondyli)

Published online by Cambridge University Press:  03 May 2013

Jennifer C. Olori*
Affiliation:
Department of Geological Sciences, Jackson School of Geosciences, University of Texas at Austin, Austin, Texas 78712, U.S.A. E-mail: Jennifer.Olori@oswego.edu

Abstract

Ontogenetic sequence reconstruction is challenging particularly for extinct taxa because of when, where, and how fossils preserve. Different methods of reconstruction exist, but the effects of preservational bias, the applicability of size-independent methods, and the prevalence of sequence polymorphism (intraspecific variation) remain unexplored for paleontological data. Here I compare five different methods of ontogenetic sequence reconstruction and their effects on the detection of sequence polymorphism, using a large collection of the extinct vertebrates Microbrachis pelikani and Hyloplesion longicostatum. The postcranial ossification sequences presented here for those taxa are the first examples known for extinct lepospondyls. Sequences were reconstructed according to skull length, trunk length, increasing number of ontogenetic events, majority-rule consensus, and Ontogenetic Sequence Analysis (OSA). Results generally were in agreement, demonstrating that paleontological data may be used to robustly reconstruct developmental patterns. When reconstructing sequences based on fossils, size-based methods and OSA are more objective and less dependent on preservational bias than other techniques. Apart from the other methods, OSA also allows for statistical analysis of observed and predicted polymorphism. However, OSA requires a large sample size to yield meaningful results, and size-based methods are justified in paleontological studies when sample size is limited by poor preservation. Different methods of reconstruction detected different patterns of sequence polymorphism, although across all methods the magnitude of sequence variation for M. pelikani and H. longicostatum (1.3−3.4%) was within the lower range of values reported for extant vertebrates. Compared with other extinct and extant tetrapods, all sequence reconstruction methods consistently showed that M. pelikani and H. longicostatum exhibit advanced ossification of the pubis and delayed ossification of the scapula. However, the postcranial ossification sequences of these two taxa largely are congruent with those of other tetrapods, suggesting an underlying conservative ancestral pattern that evolved early in tetrapod history.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Anderson, J. S. 2001. The phylogenetic trunk: maximal inclusion of taxa with missing data in an analysis of the Lepospondyli (Vertebrata, Tetrapoda). Systematic Biology 50:170193.CrossRefGoogle Scholar
Anderson, J. S. 2002. Revision of the aïstopod Phlegethontia (Tetrapoda: Lepospondyli). Journal of Paleontology 76:10291046.2.0.CO;2>CrossRefGoogle Scholar
Anderson, J. S. 2007. Incorporating ontogeny into the matrix: a phylogenetic evaluation of developmental evidence for the origins of modern amphibians. Pp. 182227inAnderson, J. S. and Sues, H.-D., eds. Major transitions in vertebrate evolution. Indiana University Press, Bloomington.Google Scholar
Anderson, J. S., Reisz, R. R., Scott, D., Fröbisch, N. B., and Sumida, S. S. 2008. A stem batrachian from the Permian of Texas and the origin of frogs and salamanders. Nature 453:515518.CrossRefGoogle ScholarPubMed
Baird, D. 1951. Latex molds in paleontology. Compass of Sigma Gamma Epsilon 28:339345.Google Scholar
Baird, D. 1965. Paleozoic lepospondyl amphibians. American Zoologist 5:287294.CrossRefGoogle Scholar
Banbury, B., and Maglia, A. M. 2006. Skeletal development of the Mexican spadefoot, Spea multiplicata (Anura: Pelobatidae). Journal of Morphology 267:803821.CrossRefGoogle ScholarPubMed
Bever, G. S. 2009. The postnatal skull of the extant North American turtle Pseudemys texana (Cryptodira: Emydidae), with comments on the study of discrete intraspecific variation. Journal of Morphology 270:97128.CrossRefGoogle Scholar
Boisvert, C. A. 2009. Vertebral development of modern salamanders provides insights into a unique event of their evolutionary history. Journal of Experimental Zoology B 312B:129.CrossRefGoogle Scholar
Brandt, L. A. 1991. Growth of juvenile alligators in Par Pond, Savannah River Site, South Carolina. Copeia 1991:11231129.CrossRefGoogle Scholar
Brochu, C. A. 1996. Closure of neurocentral sutures during crocodilian ontogeny: Implications for maturity assessment in fossil archosaurs. Journal of Vertebrate Paleontology 16:4962.CrossRefGoogle Scholar
Bystrow, A. P., and Efremov, I. A. 1940. Benthosuchus sushkini Efremov. A labyrinthodont from the Eotriassic of Sharzenga River. Travaux de l'Institut Paléontologique Académie de Sciences de l'USSR 10:1152. [In Russian with English summary.]Google Scholar
Carroll, R. L. 2000. Lepospondyls. Pp. 11981269inHeatwole, H. and Carroll, R. L., eds. Amphibian biology, Vol. 4. Paleontology: the evolutionary history of amphibians. Surrey Beatty, Chipping Norton, NSW, Australia.Google Scholar
Carroll, R. L., and Chorn, J. 1995. Vertebral development in the oldest microsaur and the problem of “lepospondyl” relationships. Journal of Vertebrate Paleontology 15:3756.CrossRefGoogle Scholar
Carroll, R. L., and Gaskill, P. 1978. The Order Microsauria. Memoirs of the American Philosophical Society 126:1211.Google Scholar
Carroll, R. L., Kuntz, A., and Albright, K. 1999. Vertebral evolution and amphibian development. Evolution and Development 1:3648.Google Scholar
Colbert, M. W. 1999. Patterns of evolution and variation in the Tapiroidea (Mammalia: Perissodactyla). Ph.D. dissertation. University of Texas, Austin.Google Scholar
Colbert, M. W., and Rowe, T. 2008. Ontogenetic sequence analysis: using parsimony to characterize developmental sequences and sequence polymorphism. Journal of Experimental Zoology B 310B:119.CrossRefGoogle Scholar
Frič, A. 1876. Über die Fauna der Gaskohle des Pilsner und Rakonitzer Beckens. Sitzungsberichte der Königlichen Böhmischen Gesellschaft der Wissenschaften, Prague1875, pp. 7079.Google Scholar
Fröbisch, N. B. 2008. Ossification patterns in the tetrapod limb—conservation and divergence from morphogenetic events. Biological Reviews 83:571600.CrossRefGoogle ScholarPubMed
Fröbisch, N. B., Carroll, R. L., and Schoch, R. R. 2007. Limb ossification in the Paleozoic branchiosaurid Apateon (Temnospondyli) and the early evolution of preaxial dominance in tetrapod limb development. Evolution and Development 9:6975.CrossRefGoogle ScholarPubMed
Halliday, T. R., and Verrell, P. A. 1988. Body size and age in amphibians and reptiles. Journal of Herpetology 22:253265.CrossRefGoogle Scholar
Harrison, L. B., and Larsson, H. C. E. 2008. Estimating evolution of temporal sequence changes: A practical approach to inferring ancestral developmental sequences and sequence heterochrony, Systematic Biology 57:378387.CrossRefGoogle ScholarPubMed
Hughes, N. C., Minelli, A., and Fusco, G. 2006. The ontogeny of trilobite segmentation: a comparative approach. Paleobiology 32:602627.CrossRefGoogle Scholar
Hunt, G., and Yasuhara, M. 2010. A fossil record of developmental events: variation and evolution in epidermal cell divisions in ostracodes. Evolution and Development 12:635646.CrossRefGoogle ScholarPubMed
Jones, D. S. 1988. Sclerochronology and the size versus age problem. Pp. 93108inMcKinney, M. L., ed. Heterochrony in evolution: a multidisciplinary approach. Plenum, New York.CrossRefGoogle Scholar
Maddison, D. R., and Maddison, W. P. 1992. MacClade, Version 3.01. Sinauer, Sunderland, Mass.Google Scholar
Maddin, H. C., Jenkins, F. A. Jr., and Anderson, J. S. 2012. The braincase of Eocaecilia micropodia (Lissamphibia, Gymnophiona) and the origin of Caecilians. PLoS ONE 7:e50743.CrossRefGoogle ScholarPubMed
Maglia, A. M., and Púgener, L. A. 1998. Skeletal development and adult osteology of Bombina orientalis (Anura: Bombinatoridae). Herpetologica 54:344363.Google Scholar
Maisano, J. A. 2002a. Postnatal skeletal ontogeny in Callisaurus draconoides and Uta stansburiana (Iguania: Phrynosomatidae). Journal of Morphology 251:114139.CrossRefGoogle ScholarPubMed
Maisano, J. A. 2002b. Postnatal skeletal ontogeny in five xantusiids (Squamata: Scleroglossa). Journal of Morphology 254:138.CrossRefGoogle Scholar
Maisano, J. A. 2002c. The potential utility of postnatal skeletal developmental patterns in squamate phylogenetics. Zoological Journal of the Linnean Society 136:277313.CrossRefGoogle Scholar
Maxwell, E. E. 2008. Comparative embryonic development of the skeleton of the domestic turkey (Meleagris gallopavo) and other galliform birds. Zoology 111:242257.CrossRefGoogle ScholarPubMed
Maxwell, E. E., and Larsson, H. C. E. 2009. Comparative ossification sequence and skeletal development of the postcranium of palaeognathous birds (Aves: Palaeognathae). Zoological Journal of the Linnean Society 157:169196.CrossRefGoogle Scholar
Milner, A. R. 1980. The tetrapod assemblage from Nýřany, Czechoslovakia. Pp. 439496inPanchen, A. L., ed. The terrestrial environment and the origin of land vertebrates. Academic Press, London.Google Scholar
Milner, A. R. 1982. Small temnospondyl amphibians from the middle Pennsylvanian of Illinois. Palaeontology 25:635664.Google Scholar
Milner, A. R. 2008. The tail of Microbrachis (Tetrapoda; Microsauria). Lethaia 41:257261.CrossRefGoogle Scholar
Rieppel, O. 1994. Studies on skeleton formation in reptiles: patterns of ossification in the skeleton of Lacerta agilis exigua Eichwald (Reptilia, Squamata). Journal of Herpetology 28:145153.CrossRefGoogle Scholar
Ruta, M., and Coates, M. I. 2007. Dates, nodes and character conflict: addressing the lissamphibian origin problem. Journal of Systematic Palaeontology 5:69122.CrossRefGoogle Scholar
Ruta, M., Jeffrey, J. E., and Coates, M. I. 2003. A supertree of early tetrapods. Proceedings of the Royal Society of London B 270:25072516.CrossRefGoogle ScholarPubMed
Schoch, R. R. 1992. Comparative ontogeny of early Permian Branchiosaurid amphibians from southwestern Germany: developmental stages. Palaeontographica, Abteilung A 222:4383.Google Scholar
Schoch, R. R. 2002. The early formation of the skull in extant and Paleozoic amphibians. Paleobiology 28:278296.2.0.CO;2>CrossRefGoogle Scholar
Schoch, R. R. 2003. Early larval ontogeny of the Permo-Carboniferous temnospondyl Sclerocephalus. Palaeontology 46:10551072.CrossRefGoogle Scholar
Schoch, R. R. 2004. Skeleton formation in the Branchiosauridae: a case study in comparing ontogenetic trajectories. Journal of Vertebrate Paleontology 24:309319.CrossRefGoogle Scholar
Schoch, R. R. 2006. Skull ontogeny: developmental patterns of fishes conserved across major tetrapod clades. Evolution and Development 8:524536.CrossRefGoogle ScholarPubMed
Schoch, R. R. 2010. Heterochrony: the interplay between development and ecology exemplified by a Paleozoic amphibian clade. Paleobiology 36:318334.CrossRefGoogle Scholar
Sheil, C. A., and Greenbaum, E. 2005. Reconsideration of skeletal development of Chelydra serpentina (Reptilia: Testudinata: Chelydridae): evidence for intraspecific variation. Journal of Zoology 265:235267.CrossRefGoogle Scholar
Shubin, N. E., and Wake, D. B. 2003. Morphological variation, development, and evolution of the limb skeleton of salamanders. Pp. 17821808inHeatwole, H. and Davies, M., eds. Amphibian biology, Vol. 5. Osteology. Surrey Beatty, Chipping Norton, NSW, Australia.Google Scholar
Sigurdsen, T., and Green, D. M. 2011. The origin of modern amphibians: a re-evaluation. Zoological Journal of the Linnean Society 162:457469.CrossRefGoogle Scholar
Skoček, V. 1968. Upper Carboniferous varvites in coal basins of central Bohemia. Věstník Ústředního Ústavu Geologického 43:113121. [In Czech.]Google Scholar
Smirnov, V., and Vassilieva, A. B. 2003. Skeletal and dental ontogeny in the smooth newt, Triturus vulgaris (Urodela: Salamandridae): role of thyroid hormone in its regulation. Russian Journal of Herpetology 10:93110.Google Scholar
Swofford, D. L. 2002. PAUP∗: phylogenetic analysis using parsimony (∗and other methods), Version 4.0 10b. Sinauer, Sunderland, Mass.Google Scholar
Vallin, G., and Laurin, M. 2004. Cranial morphology and affinities of Microbrachis, and a reappraisal of the phylogeny and lifestyle of the first amphibians. Journal of Vertebrate Paleontology 24:5672.CrossRefGoogle Scholar
Witzmann, F. 2005. Cranial morphology and ontogeny of the Permo-Carboniferous temnospondyl Archegosaurus decheni Goldfuss, 1847 from the Saar–Nahe Basin, Germany. Transactions of the Royal Society of Edinburgh (Earth Sciences) 96:131162.CrossRefGoogle Scholar
Witzmann, F. 2006. Developmental patterns and ossification sequence in the Permo-Carboniferous temnospondyl Archegosaurus decheni (Saar-Nahe Basin, Germany). Journal of Vertebrate Paleontology 26:717.CrossRefGoogle Scholar
Witzmann, F., and Schoch, R. R. 2006. The postcranium of Archegosaurus decheni, and a phylogenetic analysis of temnospondyl postcrania. Palaeontology 49:12111235.CrossRefGoogle Scholar
Witzmann, F., and Pfretzschner, H.-U. 2003. Larval ontogeny of Micromelerpeton credneri (Temnospondyli, Dissorophoidea). Journal of Vertebrate Paleontology 23:750768.CrossRefGoogle Scholar
Yeh, J. 2002. The evolution of development: two portraits of skull ossification in pipoid frogs. Evolution 56:24842498.Google ScholarPubMed