Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T13:33:14.176Z Has data issue: false hasContentIssue false

Seasonality, the latitudinal gradient of diversity, and Eocene insects

Published online by Cambridge University Press:  08 April 2016

S. Bruce Archibald
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Museum of Comparative Zoology, 26 Oxford Street, Cambridge, Massachusetts 02138. E-mail: sba48@sfu.ca
William H. Bossert
Affiliation:
Department of Organismic and Evolutionary Biology and School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138. E-mail: bossert@deas.harvard.edu
David R. Greenwood
Affiliation:
Department of Biology, Brandon University, Brandon, Manitoba R7A 6A9, Canada. E-mail: greenwoodD@brandonu.ca
Brian D. Farrell
Affiliation:
Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts 02138. E-mail: bfarrell@oeb.harvard.edu

Abstract

In the modern world, biotic diversity is typically higher in low-latitude tropical regions where there is abundant insolation (light and heat) and low thermal seasonality. Because these factors broadly covary with latitude, separating their possible effects on species diversity is difficult. The Eocene was a much more equable world, however, with low temperature seasonality extending into lower-insolation higher, cooler latitudes, allowing us to test these factors by comparing insect species diversity in (1) modern, temperate, low-insolation, highly seasonal Harvard Forest, Massachusetts, U.S.A., 42°29'N; (2) modern, tropical, high-insolation, low-seasonality La Selva, Costa Rica, 10°26'N, and; (3) Eocene, temperate, low-insolation, yet low-seasonality McAbee, British Columbia, Canada, above 50°N paleolatitude. We found insect diversity at McAbee to be more similar to La Selva than to Harvard Forest, with high species richness of most groups and decreased diversity of ichneumon wasps, indicating that seasonality is key to the latitudinal diversity gradient. Further, midlatitude Eocene woody dicot diversities at McAbee, Republic (Washington, U.S.A.), and Laguna del Hunco (Argentina) are also high, similar to modern tropical samples, higher than at the modern midlatitude Harvard Forest. Modern correlations between latitude, species diversity, and seasonal climates were established some time after the Eocene.

Type
Articles
Copyright
Copyright © The Paleontological Society 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Literature Cited

Adams, J. M., and Woodward, F. I. 1989. Patterns in tree species richness as a test of the glacial extinction hypothesis. Nature 339:699701.CrossRefGoogle Scholar
Addicott, W. O. 1970. Latitudinal gradients in Tertiary molluscan faunas of the Pacific coast. Palaeogeography, Palaeoclimatology, Palaeoecology 8:287312.CrossRefGoogle Scholar
Addo-Bediako, A., Chown, S. L., and Gaston, K. J. 2000. Thermal tolerance, climatic variability and latitude. Proceedings of the Royal Society B 267:739745.Google Scholar
Addo-Bediako, A. 2002. Metabolic cold adaptation in insects: a large-scale perspective. Functional Ecology 16:332338.Google Scholar
Allen, A. P., Brown, J. H., and Gillooly, J. F. 2002. Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:15451548.Google Scholar
Alroy, J., Marshall, C. R., Bambach, R. K., Bezusko, K., Foote, M., Fürsich, F. T., Hansen, T. A., Holland, S. M., Ivany, L. C., Jablonski, D., Jacobs, D. K., Jones, D. C., Kosnik, M. A., Lidgard, S., Low, S., Miller, A. I., Novack-Gottshall, P. M., Olszewski, T. D., Patzkowsky, M. E., Raup, D. M., Roy, K., Sepkoski, J. J. Jr., Sommers, M. G., Wagner, P. J., and Webber, A. 2001. Effects of sampling standardization on estimates of Phanerozoic marine diversification. Proceedings of the National Academy of Sciences USA 98:62616266.CrossRefGoogle ScholarPubMed
Alroy, J., Aberhan, M., Bottjer, D. J., Foote, M., Fürsich, F. T., Harries, P. J., Hendy, A. J. W., Holland, S. M., Ivany, L. C., Kiessling, W., Kosnik, M. A., Marshall, C. R., McGowan, A. J., Miller, A. I., Olszewski, T. D., Patzkowsky, M. E., Peters, S. E., Villier, L., Wagner, P. J., Bonuso, N., Borkow, P. S., Brenneis, B., Clapham, M. E., Fall, L. M., Ferguson, C. A., Hanson, V. L., Krug, A. Z., Layou, K. M., Leckey, E. H., Nürnberg, S., Powers, C. M., Sessa, J. A., Simpson, C., Tomašových, A., and Visaggi, C. C. 2008. Phanerozoic trends in the global diversity of marine invertebrates. Science 321:97100.Google Scholar
Anderson, J. M., Anderson, H. M., and Cruickshank, A. R. I. 1998. Late Triassic ecosystems of the Molteno/Lower Elliot biome of Southern Africa. Palaeontology 41:387421.Google Scholar
Anderson, J. M., Anderson, H. M., Archangelsky, S., Bamford, M., Chandra, S., Dettmann, M., Hill, R., McLoughlin, S., and Rosier, O. 1999. Patterns of Gondwana plant colonisation and diversification. Journal of African Earth Sciences 28:145167.CrossRefGoogle Scholar
Anderson, K. J., and Jetz, W. 2005. The broad-scale ecology of energy expenditure of endotherms. Ecology Letters 8:310318.Google Scholar
Andrews, J. A. 1985. True polar wanderer: an analysis of Cenozoic and Mesozoic paleomagnetic poles. Journal of Geophysical Research 90:77377750.CrossRefGoogle Scholar
Angel, M. V. 1993. Biodiversity of the Pelagic Ocean. Conservation Biology 7:760772.Google Scholar
Anthony, N. M., Johnson-Bawe, M., Jeffery, K., Clifford, S. L., Abernethy, K. A., Tutin, C. E., Lahm, S. A., White, L. J. T., Utley, J. F., Wickings, E. J., and Bruford, M. W. 2007. The role of Pleistocene refugia and rivers in shaping gorilla genetic diversity in central Africa. Proceedings of the National Academy of Sciences USA 104:2043220436.Google Scholar
Antoine, P.-O., De Franceschi, D., Flynn, J. J., Nel, A., Baby, P., Benammi, M., Calderón, Y., Espurt, N., Goswami, A., and Salas-Gismondi, R. 2006. Amber from western Amazonia reveals Neotropical diversity during the middle Miocene. Proceedings of the National Academy of Sciences USA 103:1359513600.Google Scholar
Archibald, S. B. 2005. New Dinopanorpidae (Insecta: Mecoptera) from the Eocene Okanagan Highlands (British Columbia, Canada; Washington State, USA). Canadian Journal of Earth Sciences 42:119136.CrossRefGoogle Scholar
Archibald, S. B. 2007. Climate and species diversity: the Eocene Okanagan Highlands insect view, Vol. 1. Ph.D. dissertation. Harvard University, Cambridge.Google Scholar
Archibald, S. B. 2009. New Cimbrophlebiidae (Insecta: Mecoptera) from the Early Eocene McAbee, British Columbia, Canada and Republic, Washington, USA. Zootaxa 2249:5162.Google Scholar
Archibald, S. B. 2010. A revision of the scorpionfly family Holcorpidae (Mecoptera), with description of a new species from Early Eocene McAbee, British Columbia, Canada. Annales de la Société Entomologique de France (in press).Google Scholar
Archibald, S. B., and Farrell, B. D. 2003. Wheeler's dilemma. Acta Zoologica Crakoviensia 46(Suppl.):1723.Google Scholar
Archibald, S. B., and Makarkin, V. N. 2006. Tertiary giant lacewings (Neuroptera: Polystoechotidae) revision and description of new taxa from western North America and Denmark. Journal of Systematic Paleontology 4:119155.Google Scholar
Archibald, S.B., and Mathewes, R. W. 2000. Early Eocene insects from Quilchena, British Columbia, and their paleoclimatic implications. Canadian Journal of Zoology 78:14411462.CrossRefGoogle Scholar
Archibald, S. B., Rasnitsyn, A. P., and Akhmetiev, M. A. 2005. The ecology and distribution of Cenozoic Eomeropidae (Mecoptera), and a new species of Eomerope Cockerell from the Early Eocene McAbee locality, British Columbia, Canada. Annals of the Entomological Society of America 98:503514.CrossRefGoogle Scholar
Arhonditsis, G., Brett, M. T., and Frodge, J. 2003. Environmental control and limnological impacts of a large recurrent spring bloom in Lake Washington, USA. Environmental Management 31:603618.Google Scholar
Barron, E. J. 1981. Paleogeography as a climatic forcing factor. International Journal of Earth Sciences 70:737747.Google Scholar
Basinger, J. F. 1991. The fossil forests of the Buchanan Lake Formation (Early Tertiary), Axel Heiberg Island, Canadian Arctic Archipelago: preliminary floristics and paleoclimate. Pp. 3965 in Christie, R.L. and MacMillan, N.J., eds. Tertiary fossil forests of the Geodetic Hills, Axel Heiberg Island, Arctic Archipelago, Geological Survey of Canada. Bulletin 403.Google Scholar
Beaver, R. A. 1979. Host specificity of temperate and tropical animals. Nature 281:139141.CrossRefGoogle Scholar
Behrensmeyer, A. K., and Hook, R. W., Badgley, C. E., Boy, J., Chapman, R. E., Dodson, P., Gastaldo, R. A., Graham, R. W., Martin, L. D., Olsen, P. E., Spicer, R. A., Taggart, R. E., and Wilson, M. V. H. 1992. Paleoenvironmental contexts and taphonomic modes. Pp. 15136 in Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
Berger, W. H., and Wefer, G. 1990. Export production: seasonality and intermittency, and paleoceanographic implications. Global and Planetary Change 3:245254.Google Scholar
Bigger, M. 1976. Oscillations of tropical insect populations. Nature 259:207209.CrossRefGoogle Scholar
Blackburn, T. M., and Gaston, K. J. 1996a. A sideways look at patterns in species richness, or why there are so few species outside the tropics. Biodiversity Letters 3:4453.Google Scholar
Blackburn, T. M. 1996b. Spatial patterns in the species richness of birds in the New World. Ecography 19:369376.Google Scholar
Bokma, F., Bokma, J., and Mönkkönen, M. 2001. Random processes and geographic species richness patterns: why so few species in the north? Ecography 24:4349.Google Scholar
Bonaccorso, E., Koch, I., and Peterson, A. T. 2006. Pleistocene fragmentation of Amazon species' ranges. Diversity and Distributions 12:157164.Google Scholar
Brandt, A., Gooday, A. J., Brandão, S. N., Brix, S., Brökeland, W., Cedhagen, T., Choudhury, M., Cornelius, N., Danis, B., De Mesel, I., Diaz, R. J., Gillan, D. C., Ebbe, B., Howe, J. A., Janussen, D., Kaiser, S., Linse, K., Malyutina, M., Pawlowski, J., Raupach, M., and Vanreusel, A. 2007. First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307311.Google Scholar
Brey, T., Klages, M., Dahm, C., Gorny, M., Gutt, J., Hain, S., Stiller, M., Arntz, W. E., Wägele, J.-W., and Zimmermann, A. 1994. Antarctic benthic diversity. Nature 368:297.Google Scholar
Bromham, L., and Cardillo, M. 2003. Testing the link between the latitudinal gradient in species richness and rates of molecular evolution. Journal of Evolutionary Biology 16:200207.Google Scholar
Brown, J. H., Allen, A. P., and Gillooly, J. F. 2003. Heat and biodiversity. Science 299:512513.Google Scholar
Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M., and West, G. B. 2004. Toward a metabolic theory of ecology. Ecology 85:17711789.Google Scholar
Budantsev, L.Y. 1992. Early stages and formation and dispersal of the temperate flora in the boreal region. Botanical Reviews 58:18.Google Scholar
Bush, M. B. 1994. Amazonian speciation: a necessarily complex model. Journal of Biogeography 21:517.Google Scholar
Buzas, M. A., Collins, L. S., and Culver, S. J. 2002. Latitudinal difference in biodiversity caused by higher tropical rate of increase. Proceedings of the National Academy of Sciences USA 99:78417843.Google Scholar
Cardillo, M. 1999. Latitude and rates of diversification in birds and butterflies. Proceedings of the Royal Society of London B 266:12211225.CrossRefGoogle Scholar
Cecca, F., Vrielynck, B., Lavoyer, T., and Gaget, H. 2005. Changes in the ammonite taxonomical diversity gradient during the late Jurassic-early Cretaceous. Journal of Biogeography 32:535547.Google Scholar
Chown, S. L., and Gaston, K. J. 2000. Areas, cradles and museums: the latitudinal gradient of species richness. Trends in Ecology and Evolution 15:311315.CrossRefGoogle ScholarPubMed
Chown, S. L., Sinclair, B. J., Leinaas, H. P., and Gaston, K. J. 2004. Hemispheric asymmetries in biodiversity—a serious matter for ecology. PLoS Biology 2:e406.Google Scholar
Clarke, A. 1992. Is there a latitudinal diversity cline in the sea? Trends in Ecology and Evolution 7:286287.CrossRefGoogle Scholar
Clarke, A. 2003. Costs and consequences of evolutionary temperature adaptation. Trends in Ecology and Evolution 18:573581.Google Scholar
Clarke, A. 2004. Is there a universal temperature dependence of metabolism? Functional Ecology 18:252256.CrossRefGoogle Scholar
Clarke, A., and Crame, J. A. 1997. Diversity, latitude and time: patterns in the shallow sea. Pp. 122147 in Ormund, R. J. D., Gage, J. D., and Angel, M. V., eds. Marine Biodiversity: Patterns and Process. Cambridge University Press, New York.CrossRefGoogle Scholar
Clarke, A., and Gaston, K. J. 2006. Climate, energy and diversity. Proceedings of the Royal Society B 273:22572266.CrossRefGoogle ScholarPubMed
Clarke, A., and Johnston, N. M. 1999. Scaling of metabolic rate with body mass and temperature in teleost fish. Journal of Animal Ecology 68:893905.Google Scholar
Clarke, A., and Lidgard, S. 2000. Spatial patterns of diversity in the sea: bryozoan species richness in the North Atlantic. Journal of Animal Ecology 69:799814.CrossRefGoogle ScholarPubMed
Colinvaux, P. A., and De Oliveira, P. E. 2001. Amazon plant diversity and climate through the Cenozoic. Palaeogeography, Palaeoclimatology, Palaeoecology 166:5163.Google Scholar
Colinvaux, P. A., De Oliveira, P. E., and Bush, M. B. 2000. Amazonian and Neotropical plant communities on glacial time-scales: the failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19:141169.Google Scholar
Collinson, M.E. 2000. Cenozoic evolution of modern plant communities and vegetation. Pp. 223243 in Culver, J. J. and Rawson, P. F., eds. Biotic responses to global change: the last 145 million years. Cambridge University Press, Cambridge.Google Scholar
Colwell, R. K., and Hurtt, G. C. 1994. Nonbiological gradients in species richness and a spurious Rapoport effect. American Naturalist 144:570595.CrossRefGoogle Scholar
Colwell, R. K., and Lees, D. C. 2000. The mid-domain effect: geometric constraints on the geography of species richness. Trends in Ecology and Evolution 15:7076.Google Scholar
Colwell, R. K., Rahbek, C., and Gotelli, N. J. 2004a. The mid-domain effect and species richness patterns: what have we learned so far? American Naturalist 163:E123.Google Scholar
Colwell, R. K., Mao, C. X., and Chang, J. 2004b. Interpolating, extrapolating, and comparing incidence-based species accumulation curves. Ecology 85:27172727.CrossRefGoogle Scholar
Cowling, R. M., Rundel, P. W., Lamont, B. B., Arroyo, M. K., and Arianoutsou, M. 1996. Plant diversity in Mediterranean-climate regions. Trends in Ecology and Evolution 11:362366.Google Scholar
Cracraft, J. 1985. Biological diversification and its causes. Annals of the Missouri Botanical Garden 72:794822.Google Scholar
Cracraft, J., and Prum, R. O. 1988. Patterns and processes of diversification: speciation and historical congruence in some Neotropical birds. Evolution 42:603620.Google Scholar
Crame, J. A. 1986. Late Mesozoic bipolar faunas. Geological Magazine 123:611618.CrossRefGoogle Scholar
Crame, J. A. 2000. Evolution of taxonomic diversity gradients in the marine realm: evidence from the composition of Recent bivalve faunas. Paleobiology 26:188214.2.0.CO;2>CrossRefGoogle Scholar
Crame, J. A. 2001. Taxonomic diversity gradients through geological time. Diversity and Distributions 7:175189.CrossRefGoogle Scholar
Crame, J. A. 2002. Evolution of taxonomic diversity gradients in the marine realm: a comparison of Late Jurassic and Recent bivalve faunas. Paleobiology 28:184207.Google Scholar
Crame, J. A., and Rosen, B. R. 2002. Cenozoic palaeogeography and the rise of modern biodiversity patterns. In Crame, J. A. and Owen, A. W., eds. Palaeobiogeography and biodiversity change: the Ordovician and Meso-Cenozoic radiations. Geological Society of London Special Publication 194:153168.Google Scholar
Crampton, J. S., Foote, M., Beu, A. G., Maxwell, P. A., Cooper, R. A., Matcham, I., Marshall, B. A., and Jones, C. M. 2006. The ark was full! Constant to declining Cenozoic shallow marine biodiversity on an isolated midlatitude continent. Paleobiology 32:509532.CrossRefGoogle Scholar
Crane, P. R., and Lidgard, S. 1989. Angiosperm diversification and paleolatitudinal gradients in Cretaceous floristic diversity. Science 246:675678.Google Scholar
Currie, D. J. 1991. Energy and large-scale patterns of animal- and plant-species richness. American Naturalist 137:2749.Google Scholar
Currie, D. J., and Kerr, J. T. 2008. Tests of the mid-domain hypothesis: a review of the evidence. Ecological Monographs 78:318.Google Scholar
Currie, D. J., Francis, A. P., and Kerr, J. T. 1999. Some general propositions about the study of spatial patterns of species richness. Ecoscience 6:392399.Google Scholar
Daley, B. 1972. Some problems concerning the early Tertiary climate of southern Britain. Paleogeography, Paleoclimatology, Paleoecology 11:177190.Google Scholar
Darwin, C. 1845. Journal of researches into the natural history and geology of the countries visited during the voyage of the H.M.S. Beagle round the world under the command of Capt. Roy, R. N. Fitz, 2d ed. John Murray, London.CrossRefGoogle Scholar
Dauvin, J.-C., Kendall, M., Paterson, G., Gentil, F., Jirkov, I., Sheader, M., and de Lange, M. 1994. An initial assessment of polychaete diversity in the northeastern Atlantic Ocean. Biodiversity Letters 2:171181.Google Scholar
Day, R. T., Keddy, P. A., McNeill, J., and Carleton, T. 1988. Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69:10441054.Google Scholar
Dlussky, G. M., and Rasnitsyn, A. P. 2003 [2002]. Ants (Hymenoptera: Formicidae) of Formation Green River and some other Middle Eocene deposits of North America. Russian Entomological Journal 11:411436.Google Scholar
Dobzhansky, T. 1950 Evolution in the tropics. American Scientist 38:209221.Google Scholar
Dunn, R. R., Agosti, D., Andersen, A. N., Arnan, X., Bruhl, C. A., Cerdá, X., Ellison, A. M., Fisher, B. L., Fitzpatrick, M. C., Gibb, H., Gotelli, N. J., Gove, A. D., Guenard, B., Janda, M., Kaspari, M., Laurent, E. J., Lessard, J.-P., Longino, J. T., Majer, J. D., Menke, S. B., McGlynn, T. P., Parr, C. L., Philpott, S. M., Pfeiffer, M., Retana, J., Suarez, A. V., Vasconcelos, H. L., Weiser, M. D., and Sanders, N. J. 2009. Climatic drivers of hemispheric asymmetry in global patterns of ant species richness. Ecology Letters 12:324333.Google Scholar
Dyer, L. A., Singer, M. S., Lill, J. T., Stireman, J. O., Gentry, G. L., Marquis, R. J., Ricklefs, R. E., Greeney, H. F., Wagner, D. L., Morais, H. C., Diniz, I. R., Kursar, T. A., and Coley, P. D. 2007. Host specificity of Lepidoptera in tropical and temperate forests. Nature 448:696699.Google Scholar
Edwards, D. 1989. Silurian-Devonian paleobotany: problems, progress, and potential. Pp. 89101 in Taylor, T. N. and Taylor, E. L., eds. Antarctic Paleobiology. Springer-Verlag, New York.Google Scholar
Eggleton, P. 1994. Termites live in a pear-shaped world: a response to Platnick. Journal of Natural History 28:12091212.Google Scholar
Eggleton, P., Williams, P. H., and Gaston, K. J. 1994. Explaining global termite diversity: productivity or history? Biodiversity and Conservation 3:318330.Google Scholar
Eldrett, J. S., Greenwood, D. R., Harding, I. C., and Huber, M. 2009. Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature 459:969973.Google Scholar
Erwin, D. 2009. A call to the custodians of deep time. Nature 462:282283.CrossRefGoogle Scholar
Erwin, D. M., and Stockey, R. A. 1991. Silicified monocotyledons from the Middle Eocene Princeton chert (Allenby Formation) of British Columbia, Canada. Review of Paleobotany and Palynology 70:147162.Google Scholar
Estes, R. E., and Hutchinson, H. J. 1980. Eocene lower vertebrates from Ellesmere Island, Canadian Arctic Archipelago. Paleogeography, Paleoclimatology, Paleoecology 30:324347.Google Scholar
Evans, K. L., and Gaston, K. J. 2005. Can the evolutionary-rates hypothesis explain species-energy relationships? Functional Ecology 19:899915.Google Scholar
Evans, K. L., Warren, P. H., and Gaston, K. J. 2005. Species-energy relationships at the macroecological scale: a review of the mechanisms. Biological Reviews 80:125.Google Scholar
Farrell, B. D. 1998. “Inordinate fondness” explained: why are there so many beetles? Science 281:555559.Google Scholar
Fiedler, K. 1998. Diet breadth and host plant diversity of tropical-vs. temperate zone herbivores: South-East Asian and West Palearctic butterflies as a case study. Ecological Entomology 23:285297.Google Scholar
Field, C. B., Behrenfeld, M. J., Randerson, J. T., and Falkowski, P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237240.Google Scholar
Fischer, A. G. 1960. Latitudinal variations in organic diversity. Evolution 14:6481.Google Scholar
Fisher, R. A., Corbet, A. S., and Williams, C. B. 1943. The relation between the number of species and the number of individuals in a random sample of an animal population. Journal of Animal Ecology 12:4258.Google Scholar
Francis, A. P., and Currie, D. J. 2003. A globally consistent richness-climate relationship for angiosperms. American Naturalist 161:523536.Google Scholar
Fürsich, F. T., and Sykes, R. M. 1977. Palaeobiogeography of the European Boreal Realm during Oxfordian (Upper Jurassic) times: a quantitative approach. Neues Jahrbuch für Geologie und Paláontologie Abhandlungen 155:137161.Google Scholar
Gaston, K. J. 1996. Biodiversity — latitudinal gradients. Progress in Physical Geography 20:466476.Google Scholar
Gaston, K. J. 2000. Global patterns in diversity. Nature 405:220233.Google Scholar
Gaston, K. J., and Blackburn, T. M. 1996. The tropics as a museum of biological diversity: an analysis of the New World avifauna. Proceedings of the Royal Society B 263:6368.Google Scholar
Gaston, K. J., and Chown, S. L. 1999. Why Rapoport's rule does not generalize. Oikos 84:309312.Google Scholar
Gaston, K. J., Williams, P. H., Eggleton, P., and Humphries, C. J. 1995. Large scale patterns of biodiversity: spatial variation in family richness. Proceedings of the Royal Society B 260:149154.Google Scholar
Gaston, K. J., Blackburn, T. M., and Spicer, J. I. 1998. Rapoport's rule: time for an epitaph? Trends in Ecology and Evolution 13:7074.Google Scholar
Gauld, I. D., and Gaston, K. J. 1995. The Costa Rican Hymenoptera fauna. Pp. 1319 in Hanson, P. E. and Gauld, I. D., eds. The Hymenoptera of Costa Rica. Oxford University Press, New York.Google Scholar
Gentry, A. H. 1988. Changes in plant community diversity and floristic composition on environmental and geographical gradients. Annals of the Missouri Botanical Garden 75:134.Google Scholar
Goldblatt, P. 1997. Floristic diversity in the Cape Flora of South Africa. Biodiversity and Conservation 6:359377.Google Scholar
Gotelli, N. J., and Colwell, R. K. 2001. Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecology Letters 4:379391.Google Scholar
Gould, S. J. 1989. Wonderful Life: the Burgess Shale and the nature of history. Norton and Co., New York.Google Scholar
Gray, J. S. 2001. Antarctic marine benthic biodiversity in a worldwide latitudinal context. Polar Biology 24:633641.Google Scholar
Greenwood, D. R. 2005. Leaf margin analysis: taphonomic constraints. Palaios 20:498505.Google Scholar
Greenwood, D. R., and Christophel, D. C. 2005. The origins and Tertiary history of Australian “Tropical” rainforests. Pp. 336373 in Bermingham, E., Dick, C., and Moritz, C., eds. Tropical rainforests: past, present, and future. University of Chicago Press, Chicago.Google Scholar
Greenwood, D. R., and Wing, S. L. 1995. Eocene continental climates and latitudinal temperature gradients. Geology 23:10441048.Google Scholar
Greenwood, D. R., Moss, P. T., Rowett, A. I., Vadala, A. J., and Keefe, R. L. 2003. Plant communities and climate change in southeastern Australia during the early Paleogene. Pp. 365380 in Wing, S. L., Gingerich, P. D., Schmitz, B., and Thomas, E., eds. Causes and consequences of globally warm climates in the Early Paleogene. Geological Society of America Special Paper 369.Google Scholar
Greenwood, D. R., Archibald, S. B., Mathewes, R. W., and Moss, P. T. 2005. Fossil biotas from the Okanagan Highlands, southern British Columbia and northern Washington State: climates and ecosystems across an Eocene landscape. Canadian Journal of Earth Sciences 42:167185.Google Scholar
Grimaldi, D., and Engel, M. S. 2005. Evolution of the insects. Cambridge University Press, New York.Google Scholar
Haffer, J. 1969. Speciation in Amazonian forest birds. Science 165:131137.Google Scholar
Haffer, J. 1997. Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation 6:451476.Google Scholar
Hallam, A. 1972. Diversity and density characteristics of Pliensbachian-Toarcian molluscan and brachiopod faunas of the North Atlantic margins. Lethaia 5:389412.Google Scholar
Harding, I. C., and Chant, L. S. 2000. Self-sedimented diatom mats as agents of exceptional fossil preservation in the Oligocene Florissant Lake Beds, Colorado, United States. Geology 28:195198.Google Scholar
Harrington, G. J. 2004. Structure of the North American vegetation gradient during the late Paleocene/early Eocene warm climate. Evolutionary Ecology Research 6:3348.Google Scholar
Harrington, G. J., and Jaramillo, C. A. 2007. Paratropical floral extinction in the Late Palaeocene-Early Eocene. Journal of the Geological Society, London 164:323332.Google Scholar
Harrison, S., and Cornell, H. V. 2007. Introduction: merging evolutionary and ecological approaches to understanding geographic gradients in species richness. American Naturalist 170(suppl.):S1S4.Google Scholar
Harvard Forest. 2006. http://harvardforest.fas.harvard.edu/data/cli.html, Faculty of Arts and Sciences Harvard University (accessed November 2006).Google Scholar
Hawkins, B. A. 2001. Ecology's oldest pattern? Trends in Ecology and Evolution 16:470.Google Scholar
Hawkins, B. A. 2004. Summer vegetation, deglaciation and the anomalous bird diversity gradient in eastern North America. Global Ecology and Biogeography 13:321325.Google Scholar
Hawkins, B., and Porter, E. 2003. Relative influences of current and historical factors on mammal and bird diversity patterns in deglaciated North America. Global Ecology and Biogeography 12:475481.CrossRefGoogle Scholar
Hawkins, B. A., Porter, E. E., and Diniz-Filho, J. A. F. 2003. Productivity and history as predictors of the latitudinal gradient of terrestrial birds. Ecology 84:16081623.Google Scholar
Hayek, L. C., and Buzas, M. A. 1996. Surveying natural populations. Columbia University Press, New York.Google Scholar
Hecht, A. D., and Agan, B. 1972. Diversity and age relationships in recent and Miocene bivalves. Systematic Zoology 21:308312.Google Scholar
Heie, O. 1994. Why are there so few aphid species in the temperate areas of the Southern-Hemisphere? European Journal of Entomology. 91:127133.Google Scholar
Hillebrand, H. 2004. Strength, slope and variability of marine latitudinal gradients. Marine Ecology Progress Series 273:251267.Google Scholar
Hooker, J. J. 2000. Paleogene mammals; crises and ecological change. Pp. 333349 in Culver, S. J. and Rawson, P. F., eds. Biotic response to global change: the last 145 million years. Cambridge University Press, London.Google Scholar
Hoorn, C. 1997. Palynology of the Pleistocene glacial/interglacial cycles of the Amazon Fan (holes 940A, 944A, and 946A). In Flood, R. D., Piper, D. J. W., Klaus, A., and Peterson, L. C., eds. Proceedings of the Ocean Drilling Program, Scientific Results 155:397409.Google Scholar
Hopkins, D. J., and Johnson, K. R. 1997. First record of cycad leaves from the Eocene Republic flora. Washington Geology 25:37.Google Scholar
Hopper, S. D. 1979. Biogeographical aspects of speciation in the southwest Australian flora. Annual Review of Ecology and Systematics 10:399422.Google Scholar
Hopper, S. D., and Gioia, P. 2004. The southwest Australian floristic region: evolution and conservation of a global hot spot of biodiversity. Annual Review of Ecology, Evolution, and Systematics 35:623650 Google Scholar
Horrell, M. A. 1991. Phytogeography and paleoclimatic interpretation of the Maestrichtian. Palaeogeography, Palaeoclimatology, Palaeoecology 86:87138.Google Scholar
House, M. R. 1973. An analysis of Devonian goniatite distributions. Special Papers in Palaeontology 12:305317.Google Scholar
Huey, R. B. 1978. Latitudinal pattern of between-altitude faunal similarity: mountains might be “higher” in the tropics. American Naturalist 112:225229.Google Scholar
Hunt, J. H., and Amdam, G. V. 2005. Bivoltinism as an antecedent to eusociality in the paper wasp genus Polistes . Science 308:264267.Google Scholar
Huston, M. A. 1994. Biological diversity: the coexistence of species on changing landscapes. Cambridge University Press, Cambridge, U.K. Google Scholar
Huston, M. A. 2003. Heat and biodiversity. Science 299:512.Google Scholar
Hutchinson, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145159.Google Scholar
Jablonski, D., Roy, K., and Valentine, J. W. 2006. Out of the tropics: evolutionary dynamics of the latitudinal diversity gradient. Science 314:102106.Google Scholar
Jahren, A. H. 2007. The Arctic forest of the Middle Eocene. Annual Review of Earth and Planetary Sciences 35:509–40.Google Scholar
Janzen, D. H. 1967. Why mountain passes are higher in the tropics. American Naturalist 101:233249.Google Scholar
Janzen, D. H. 1981. The peak in North American ichneumonid species richness lies between 38° and 42° North. Ecology 62:532537.Google Scholar
Jaramillo, C., Rueda, M. J., Mora, G. 2006. Cenozoic plant diversity in the Neotropics. Science 311:18931896.Google Scholar
Jobbágy, E. G., and Jackson, R. B. 2000. Global controls of forest line elevation in the Northern and Southern Hemispheres. Global Ecology and Biogeography 9:253268.Google Scholar
Johnson, K. R., and Ellis, B. 2002. A tropical rainforest in Colorado 1.4 million years after the Cretaceous-Tertiary boundary. Science 296:23792383.Google Scholar
Kastner, T. P., and Goñi, M. A. 2003. Constancy in the vegetation of the Amazon Basin during the late Pleistocene: evidence from the organic matter composition of Amazon deep sea fan sediments. Geology 31:291294.Google Scholar
Kelley, P. H., Raymond, A., and Lutken, C. B. 1990. Carboniferous brachiopod migration and latitudinal diversity: a new palaeoclimatic method. Geological Society of London Memoirs 12:325332.Google Scholar
Kershaw, A. P. 1996. A bioclimatic analysis of Early to Middle Miocene brown coal floras, Latrobe Valley, southeastern Australia. Australian Journal of Botany 45:373–83.Google Scholar
Kershaw, A. P., and Nix, H. A. 1988. Quantitative palaeoclimatic estimates from pollen data using bioclimatic profiles of extant taxa. Journal of Biogeography 15:589602.Google Scholar
Klopfer, P. H. 1959. Environmental determinants of faunal diversity. American Naturalist 93:337342.Google Scholar
Klopfer, P. H., and MacArthur, R. H. 1960. Niche size and faunal diversity. American Naturalist 94:293300.Google Scholar
Kouki, J., Niemelä, P., and Viitasaari, M. 1994. Reversed latitudinal gradient in species richness of sawflies (Hymenoptera, Symphyta). Annales Zoologici Fennici 31:8388.Google Scholar
Kozak, K. H., and Wiens, J. J. 2007. Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society B 274:29953003.Google Scholar
Kristensen, N. P., Scoble, M. J., and Karsholt, O. 2007. Lepidoptera phylogeny and systematics: the state of inventorying moth and butterfly diversity. Zootaxa 1668:699747.Google Scholar
Labandeira, C. C. 2002. Paleobiology of middle Eocene plant-insect associations from the Pacific Northwest: a preliminary report. Rocky Mountain Geology 37:3159.CrossRefGoogle Scholar
Labandeira, C. C., Johnson, K. R., and Wilf, P. 2002. Impact of the terminal Cretaceous event on plant-insect associations. Proceedings of the National Academy of Sciences USA 99:20612066.Google Scholar
Lane, C. S. 2007. Latitudinal range variation of trees in the United States: a reanalysis of the applicability of Rapoport's rule. Professional Geographer 59:115130.Google Scholar
Latham, R. E., and Ricklefs, R. E. 1993. Global patterns of tree species richness in moist forests: energy-diversity theory does not account for variation in species richness. Oikos 67:325333.Google Scholar
Leighton, L. R. 2005. The latitudinal diversity gradient through deep time: testing the “age of the tropics” hypothesis using Carboniferous productidine brachiopods. Evolutionary Ecology 19:563581.Google Scholar
Lovegrove, B. G. 2000. The zoogeography of mammalian basal metabolic rate. American Naturalist 156:201219.Google Scholar
Lovegrove, B. G. 2003. The influence of climate on the basal metabolic rate of small mammals: a slow-fast metabolic continuum. Journal of Comparative Physiology B 173:87112.Google Scholar
MacArthur, R. H. 1972. Geographical ecology: patterns in the distribution of species. Harper and Row, New York.Google Scholar
Magurran, A. E. 2004. Measuring biological diversity. Blackwell, Maiden, Mass. Google Scholar
Markwick, P. J. 1994. “Equability,” continentality, and Tertiary “climate”: the crocodilian perspective. Geology 22:613616.Google Scholar
Martin, P. R., and McKay, J. K. 2004. Latitudinal variation in genetic divergence of populations and the potential for future speciation. Evolution 58:938945.Google Scholar
Martinez-Delclòs, X., and Martinell, J. 1993. Insect taphonomy experiments. Their application to the Cretaceous outcrops of lithographic limestones from Spain. Kaupia. Darmstädter Beiträge zur Naturgeschichte 2:133144.Google Scholar
May, R. M. 1993. Resisting resistance. Nature 361:593594.Google Scholar
McDade, L. A., and Hartshorn, G. S. 1994. La Selva Biological Station. Pp. 614 in McDade, L. A., Bawa, K. S., Hesenheide, H. A., and Hartshorn, G. S., eds. La Selva: ecology and natural history of a Neotropical rainforest. University of Chicago Press, Chicago.Google Scholar
McGowan, A. J., and Smith, A. B. 2008. Are global Phanerozoic marine diversity curves truly global? A study of the relationship between regional rock records and global Phanerozoic marine diversity. Paleobiology 34:80103.Google Scholar
McKenna, D. D., and Farrell, B. D. 2006. Tropical forests are both evolutionary cradles and museums of leaf beetle diversity. Proceedings of the National Academy of Sciences USA 103:1094710951.Google Scholar
McKenna, M. 1980. Eocene paleolatitude, climate and mammals of Ellesmere Island. Paleogeography, Paleoclimatology, Paleoecology 30:349362.Google Scholar
Michener, C. D. 1979. Biogeography of the bees. Annals of the Missouri Botanical Garden 66:277347.Google Scholar
Mittelbach, G. G., Schemske, D. W., Cornell, H. V., Allen, A. P., Brown, J. M., Bush, M. B., Harrison, S. P., Hurlbert, A. H., Knowlton, N., Lessios, H. A., McCain, C. M., McCune, A. R., McDade, L. A., McPeek, M. A., Near, T. J., Price, T. D., Ricklefs, R. E., Roy, K., Sax, D. F., Schluter, D., Sobel, J. M., and Turelli, M. 2007. Evolution and the latitudinal diversity gradient: speciation, extinction and biogeography. Ecology Letters 10:315331.Google Scholar
Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., and Pierce, N. E. 2006. Phylogeny of the ants: diversification in the age of angiosperms. Science 312:101104.Google Scholar
Moreno, R. A., Rivadeneira, M. M., Hernández, C. E., Sampértegui, S., and Rozbaczylo, N. 2008. Do Rapoport's rule, the mid-domain effect or the source-sink hypotheses predict bathymetric patterns of polychaete richness on the Pacific coast of South America? Global Ecology and Biogeography 17:415423.Google Scholar
Moritz, C., Patron, J. L., Schneider, C. J., and Smith, T. B. 2000. Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology and Systematics 31:533563.Google Scholar
Mosbrugger, V., and Utescher, T. 1997. The coexistence approach—a method for quantitative reconstructions of Tertiary terrestrial palaeoclimate data using plant fossils. Palaeogeography, Palaeoclimatology, Palaeoecology 134:6186.Google Scholar
Moss, P. T., and Kershaw, A. P. 2000. The last glacial cycle from the humid tropics of northeastern Australia: comparison of a terrestrial and a marine record. Palaeogeography, Palaeoclimatology, Palaeoecology 155:155176.Google Scholar
Moss, P. T., Greenwood, D. R., and Archibald, S. B. 2005. Regional and local vegetation community dynamics of the Eocene Okanagan Highlands (British Columbia/Washington State) from palynology. Canadian Journal of Earth Sciences 42:187204.Google Scholar
Mustoe, G. E. 2005. Diatomaceous origin of siliceous shale in Eocene lake beds of central British Columbia. Canadian Journal of Earth Sciences 42:321–241.Google Scholar
Nair, K. S. S. 2007. Tropical forest insect pests: ecology, impact, and management. Cambridge University Press, New York.Google Scholar
Nelson, B. W., Ferreira, C. A. C., da Silva, M. F., and Kawasaki, M. L. 1990. Endemism centres, refugia and botanical collection density in Brazilian Amazonia. Nature 345:714716.Google Scholar
Novotny, V., Drozd, P., Miller, S. E., Kulfan, M., Janda, M., Basset, Y., and Weiblen, G. D. 2006. Why are there so many species of herbivorous insects in tropical rainforests? Science 313:11151118.Google Scholar
Novotny, V., Miller, S. E., Hulcr, J., Drew, R. A. I., Basset, Y., Janda, M., Setliff, G. P., Darrow, K., Stewart, A. J. A., Auga, J., Isua, B., Molem, K., Manumbor, M., Tamtiai, E., Mogia, M., and Weiblen, G. D. 2007. Low beta diversity of herbivorous insects in tropical forests. Nature 448:692695.Google Scholar
Noyes, J. S. 1989. The diversity of Hymenoptera in the tropics with special reference to Parasitica in Sulawesi. Ecological Entomology 14:197207.Google Scholar
O'Brien, E. M. 1993. Climatic gradients in woody plant species richness: towards an explanation based on an analysis of southern Africa's woody flora. Journal of Biogeography 20:181198.Google Scholar
O'Brien, E. M. 1998. Water-energy dynamics, climate, and prediction of woody plant species richness: an interim general model. Journal of Biogeography 25:379398.Google Scholar
O'Brien, N. R., Meyer, H. W., Reilly, K., Ross, A. M., and Maguire, S. 2002. Microbial taphonomic processes in the fossilization of insects and plants in the late Eocene Florissant Formation, Colorado. Rocky Mountain Geology 37:111.Google Scholar
Oliver, I., and Beattie, A. J. 1993. A possible method for the rapid assessment of biodiversity. Conservation Biology 7:562568.Google Scholar
Owens, I. P. F., Bennett, P. M., and Harvey, P. H. 1999. Species richness among birds: body size, life history, sexual selection or ecology? Proceedings of the Royal Society of London B 266:933939.Google Scholar
Palmer, M. W. 1994. Variation in species richness—towards a unification of hypotheses. Folia Geobotanica and Phytotaxonomica 29:511530.Google Scholar
Peters, S. E., and Foote, M. 2001. Biodiversity in the Phanerozoic: a reinterpretation. Paleobiology 27:583601.2.0.CO;2>CrossRefGoogle Scholar
Pianka, E. R. 1966. Latitudinal gradients of species diversity. American Naturalist 100:3346.Google Scholar
Platnick, N. I. 1991. Patterns of biodiversity: tropical vs temperate. Journal of Natural History 25:10831088.Google Scholar
Poore, G. C. B., and Wilson, G. D. F. 1993. Marine species richness. Nature 361:597598.Google Scholar
Powell, M. G. 2007. Latitudinal diversity gradients for brachiopod genera during late Palaeozoic time: links between climate, biogeography and evolutionary rates. Global Ecology and Biogeography 16:519528.Google Scholar
Prothero, D. R. 1994. The Late Eocene-Oligocene extinctions. Annual Review of Earth and Planetary Sciences 22:145165.Google Scholar
Qian, H., Fridley, J. D., and Palmer, M. W. 2007. The latitudinal gradient of species-area relationships for vascular plants of North America. American Naturalist 170:690701.Google Scholar
Rasnitsyn, A. P., and Quicke, D. L. J., eds. 2002. History of insects. Kluwer Academic, Dordrecht, The Netherlands. Google Scholar
Raup, D. M. 1972. Taxonomic diversity during the Phanerozoic. Science 177:10651071.Google Scholar
Raup, D. M. 1976. Species diversity in the Phanerozoic: an interpretation. Paleobiology 2:289297.Google Scholar
Raup, D. M., and Jablonski, D. 1993. Geography of end-Cretaceous marine bivalve extinctions. Science 260:971973.Google Scholar
Raymond, A. C., Kelley, P. H., and Lutken, C. B. 1989. Polar glaciers and life at the equator; the history of Dinantian and Namurian (Carboniferous) climate. Geology 17:408411.Google Scholar
Rees, P. M., Noto, C. R., Parrish, J. M., and Parrish, J. T. 2004. Late Jurassic climates, vegetation, and dinosaur distributions. Journal of Geology 112:643653.Google Scholar
Reid, E. M., and Chandler, M. E. J. 1933. The London clay flora. British Museum of Natural History, London.Google Scholar
Rex, M. A., Stuart, C. T., Hessler, R. R., Allen, J. A., Sanders, H. L., and Wilson, G. D. F. 1993. Global-scale latitudinal patterns of species diversity in the deep-sea benthos. Nature 365:636.Google Scholar
Rodriguero, M. S., and Gorla, D. E. 2004. Latitudinal gradient in species richness of the New World Triatominae (Reduviidae). Global Ecology and Biogeography 13:7584.Google Scholar
Rohde, K. 1978. Latitudinal differences in host-specificity of marine Monogenea and Digenea. Marine Biology 47:125134.Google Scholar
Rohde, K. 1992. Latitudinal gradients in species diversity: the search for the primary cause. Oikos 65:514527.Google Scholar
Rohde, K. 1996. Rapoport's rule is a local phenomenon and cannot explain latitudinal gradients in species diversity. Biodiversity Letters 3:1013.Google Scholar
Rohde, K. 1997. The larger area of the tropics does not explain latitudinal gradients in species diversity. Oikos 79:169172.Google Scholar
Rohde, K. 1999. Latitudinal gradients in species diversity and Rapoport's rule revisited: a review of recent work and what can parasites teach us about the causes of the gradients? Ecography 22:593613.Google Scholar
Rosenheim, J. A., and Tabashnik, B. E. 1991. Influence of generation time on the rate of response to selection. American Naturalist 137:527541.Google Scholar
Rosenzweig, M. L. 1992. Species diversity gradients: we know more and less than we thought. Journal of Mammalogy 73:715730.Google Scholar
Rosenzweig, M. L. 1995. Species diversity in space and time. Cambridge University Press, New York.Google Scholar
Rosenzweig, M. L., and Sandlin, E. A. 1997. Species diversity and latitudes: listening to area's signal. Oikos 80:172176.Google Scholar
Ross, C. A., and Ross, J. R. P. 1985. Carboniferous and Early Permian biogeography. Geology 13:2730.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 1994. Eastern Pacific molluscan provinces and latitudinal diversity gradient: No evidence for “Rapoport's rule.” Proceedings of the National Academy of Sciences USA 91:88718874.Google Scholar
Roy, K., Jablonski, D., Valentine, J. W., and Rosenberg, G. 1998. Marine latitudinal diversity gradients: tests of causal hypotheses. Proceedings of the National Academy of Sciences USA 95:36993702.Google Scholar
Roy, K., Jablonski, D., and Valentine, J. W. 2000. Dissecting latitudinal diversity gradients: functional groups and clades of marine bivalves. Proceedings of the Royal Society B 267:293299.Google Scholar
Royer, D. L., Osborne, C. P., and Beerling, D. J., 2002. High CO2 increases the freezing sensitivity of plants: implications for paleoclimatic reconstructions from fossil floras. Geology 30:963966.Google Scholar
Ruggiero, A., and Werenkraut, V. 2007. One-dimensional analyses of Rapoport's rule reviewed through meta-analysis. Global Ecology and Biogeography 16:401414.Google Scholar
Sakai, A., and Larcher, W. 1987. Frost survival of plants: responses and adaptation to freezing stress. Springer, Berlin.Google Scholar
Sanford, R. L. Jr., Paaby, P., Luvall, J. C., and Phillips, E. 1994. Climate, geomorphology, and aquatic systems. Pp. 1933 in McDade, L. A., Bawa, K. S., Hesenheide, H. A. and Hartshorn, G. S., eds. La Selva: ecology and natural history of a neotropical rainforest. University of Chicago Press, Chicago.Google Scholar
Schall, J. J., and Pianka, E. R. 1978. Geographical trends in numbers of species. Science 201:679686.Google Scholar
Schorn, H. E., and Wehr, W. C. 1994. The conifer flora from the Eocene uplands at Republic, Washington. Washington Geology 22:2224.Google Scholar
Schouten, S., Eldrett, J., Greenwood, D. R., Harding, I., Baas, M., and Damsté, J. S. S. 2008. Onset of long term cooling of Greenland near the Eocene-Oligocene boundary as revealed by branched tetraether lipids. Geology 36:147150.Google Scholar
Schweitzer, H. 1980. Environment and climate in the Early Tertiary of Spitsbergen. Palaeogeography, Palaeoclimatology, Palaeoecology 30:297311.Google Scholar
Scriber, J. M. 1973. Latitudinal gradients in larval feeding specialization of the world Papilionidae (Lepidoptera). Psyche 80:355373.Google Scholar
Seger, J. 1983. Partial bivoltinism may cause alternating sex-ratio biases that favour eusociality. Nature 301:5962.Google Scholar
Shellito, C. J., and Sloan, L. C. 2006. Reconstructing a lost Eocene Paradise, Part II. On the utility of dynamic global vegetation models in pre-Quaternary climate studies. Global and Planetary Change 50:1832.Google Scholar
Shellito, C. J., Sloan, L. C., and Huber, M. 2003. Climate model sensitivity to atmospheric CO2 levels in the Early-Middle Paleogene. Palaeogeography, Palaeoclimatology, Palaeoecology 193:113123.Google Scholar
Shen, S. Z., and Shi, G. R. 2004. Capitanian (Late Guadalupian, Permian) global brachiopod palaeobiogeography and latitudinal diversity pattern. Palaeogeography, Palaeoclimatology, Palaeoecology 208:235262.Google Scholar
Shi, G. R., Archbold, N. W., and Zhan, L.-P. 1995. Distribution and characteristics of mixed (transitional) mid-Permian (Late Artinskian-Ufimian) marine faunas in Asia and their palaeogeographical implications. Palaeogeography, Palaeoclimatology, Palaeoecology 114:241271.Google Scholar
Shi, G. R., and Grunt, T. A. 2000. Permian Gondwana-Boreal antitropicality with special reference to brachiopod faunas. Palaeogeography, Palaeoclimatology, Palaeoecology 155:239263.Google Scholar
Silvertown, J. 1985. History of a latitudinal diversity gradient—woody plants in Europe 13,000–1000 years bp. Journal of Biogeography 12:519525.Google Scholar
Simpson, G. G. 1964. Species density of North American Recent mammals. Systematic Zoology 13:5773.Google Scholar
Sinclair, B. J., Vernon, P., Klok, C. J., Chown, S. L. 2003. Insects at low temperatures: an ecological perspective. Trends in Ecology and Evolution 18:257262.Google Scholar
Sluijs, A., Schouten, S., Donders, T. H., Schoon, P. L., Röhl, U., Reichart, G.-J., Sangiorgi, F., Kim, J.-H., Damsté, J. S. Sinninghe, and Brinkhuis, H. 2009. Warm and wet conditions in the Arctic region during Eocene Thermal Maximum 2. Nature Geoscience 2:777780.Google Scholar
Smart, C. W., King, S. C., Gooday, A., Murray, J. W., and Thomas, E. 1994. A benthic foraminiferal proxy of pulsed organic matter paleofluxes. Marine Micropaleontology 23:8999.Google Scholar
Smith, A. B. 2007. Marine diversity through the Phanerozoic: problems and prospects. Journal of the Geological Society, London 164:731745.Google Scholar
Sohl, N. F. 1987. Cretaceous gastropods: contrasts between Tethys and the temperate provinces. Journal of Paleontology 61:10851111.Google Scholar
Spicer, R. A., Rees, P. McA., and Chapman, J. L. 1993. Cretaceous phytogeography and climate signals. Philosophical Transactions of the Royal Society of London B 341:277286.Google Scholar
Srivastava, D. S., and Lawton, J. H. 1998. Why more productive sites have more Species: an experimental test of theory using tree-hole communities. American Naturalist 152:510529.Google Scholar
Stauffer, D., Schulze, C., and Rohde, K. 2007. Habitat width along a latitudinal gradient. Vie et Milieu—Life and Environment 57:181187.Google Scholar
Stebbins, G. L. 1974. Flowering plants: evolution above the species level. Belknap Press of Harvard University Press, Cambridge.Google Scholar
Stenseth, N. C. 1984. The tropics: cradle or museum? Oikos 43:417420.Google Scholar
Stehli, F. G., Douglas, R. G., and Newell, N. D. 1969. Generation and maintenance of gradients in taxonomic diversity. Science 164:947949.Google Scholar
Stevens, G. C. 1989. The latitudinal gradient in geographic range: how so many species coexist in the tropics. American Naturalist 133:240256.Google Scholar
Storch, D. 2003. Comment on “Global biodiversity, biochemical kinetics, and the energetic-equivalence rule.” Nature 299:346b.Google Scholar
Taylor, J. D., Morris, N. J., and Taylor, C. N. 1980. Food specialisation and the evolution of predatory prosobranch gastropods. Palaeontology 23:375409.Google Scholar
Terborgh, J. 1973. On the notion of favorableness in plant ecology. American Naturalist 107:481501.Google Scholar
Thomas, E., and Gooday, A. J. 1996. Cenozoic deep-sea benthic foraminifers; tracers for changes in oceanic productivity? Geology 24:355358.Google Scholar
Thompson, R. S., Anderson, K. H. and Bartlein, P. J. 1999. Atlas of relations between climatic parameters and distributions of important trees and shrubs in North America. U.S. Geological Survey Professional Paper 1650 A and B. Online Version 1.0, 14 December 1999 http://pubs.usgs.gov/pp/p1650-a/.Google Scholar
Tilman, D., and Pacala, S. 1993. The maintenance of species richness in plant communities. Pp. 1325 in Ricklefs, R. E. and Schluter, D., eds. Species diversity in ecological communities: historical and geographical perspectives. University of Chicago Press, Chicago.Google Scholar
Tribe, S. 2005. Eocene paleo-physiography and drainage directions, southern Interior Plateau, British Columbia. Canadian Journal of Earth Sciences 42:215230.Google Scholar
Turner, J. R. G. 2004. Explaining the global biodiversity gradient: energy, area, history and natural selection. Basic and Applied Ecology 5:435448.Google Scholar
Upchurch, G. R., and Wolfe, J. A. 1987. Mid-Cretaceous to Early Tertiary vegetation and climate: evidence from fossil leaves and woods. Pages 75106 in Friis, E. M., Chaloner, W. G., and Crane, P. R., eds. The origins of angiosperms and their biological consequences. Cambridge University Press, Cambridge.Google Scholar
Van der Hammen, T., and Hooghiemstra, H. 2000. Neogene and Quaternary history of vegetation, climate, and plant diversity in Amazonia. Quaternary Science Reviews 19:725742.Google Scholar
Vazquez, D. P., and Stevens, R. D. 2004. The latitudinal gradient in niche breadth: concepts and evidence. American Naturalist 164:E1E19.Google Scholar
von Humboldt, A. 1808. Ansichten der Natur mit Wissenschaftlichen Erläuterungen. Tübingen, Germany [Views of nature: or, contemplations on the sublime phenomena of creation; with scientific illustrations. 1850 translation from the German by Otté, E. C. and Bohn, H. G. H. G. Bohn, London.]Google Scholar
Wagner, T., Neinhuis, C., and Barthlott, W. 1996. Wettability and contaminability of insect wings as a function of their surface sculptures. Acta Zoologica 77:213225.Google Scholar
Waller, C. L. 2008. Variability in intertidal communities along a latitudinal gradient in the Southern Ocean. Polar Biology 31:809816.Google Scholar
Wehr, W. C., and Manchester, S. R. 1996. Paleobotanical significance of Eocene flowers, fruits, and seeds from Republic, Washington. Washington Geology 24:2527.Google Scholar
Whinnett, A., Zimmermann, M., Willmott, K. R., Herrera, N., Mallarino, R., Simpson, F., Joron, M., Lamas, G., and Mallet, J. 2005. Strikingly variable divergence times inferred across an Amazonian butterfly ‘suture zone’. Proceedings of the Royal Society B 272:25252533.Google Scholar
Whittle, C.-A., and Johnston, M. O. 2003. Broad-scale analysis contradicts the theory that generation time affects molecular evolutionary rates in plants. Journal of Molecular Evolution 56:223233.Google Scholar
Wilf, P. 1997. When are leaves good thermometers? A new case for leaf margin analysis. Paleobiology 23:373390.Google Scholar
Wilf, P., Cúneo, N. R., Johnson, K. R., Hicks, J. F., Wing, S. L., and Obradovich, J. D. 2003. High plant diversity in Eocene South America: evidence from Patagonia. Science 300:122125.Google Scholar
Wilf, P., Johnson, K. R., Cúneo, N. R., Smith, M. E., Singer, B. S., and Gandolfo, M. A. 2005a. Eocene plant diversity at Laguna del Hunco and Río Pichileufú, Patagonia, Argentina. American Naturalist 165:634650.Google Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., and Cúneo, N. R. 2005b. Richness of plant-insect associations in Eocene Patagonia: a legacy for South American biodiversity. Proceedings of the National Academy of Sciences USA 102:89448948.Google Scholar
Wilf, P., Labandeira, C. C., Johnson, K. R., and Ellis, B. 2006. Decoupled plant and insect diversity after the end-Cretaceous extinction. Science 313:11121115.Google Scholar
Willig, M. R., Kaufman, D. M., and Stevens, R. D. 2003. Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annual Review of Ecology, Evolution, and Systematics 34:273309.Google Scholar
Wing, S. L. 1987. Eocene and Oligocene floras and vegetation of the Rocky Mountains. Annals of the Missouri Botanical Garden 74:748784.Google Scholar
Wing, S. L., and DiMichele, W. A. 1995. Conflict between local and global changes in plant diversity through geological time. Palaios 10:551564.Google Scholar
Wing, S. L., and Greenwood, D. R. 1993. Fossils and fossil climate: the case for equable continental interiors in the Eocene. In Allen, J. R. L., Hoskins, B. J., Sellwood, B. W., and Spicer, R. A., eds. Palaeoclimates and their modelling with special reference to the Mesozoic Era. Philosophical Transactions of the Royal Society of London B 341:243252.Google Scholar
Wing, S. L., Sues, H.-D., Tiffney, B. H., Stuckey, R. K., Weishampel, D. B., Spicer, R. A., Jablonski, D., Badgley, C. E., Wilson, M. V. H., and Kovack, W. L. 1992. Mesozoic and early Cenozoic ecosystems. Pp. 327416 in Behrensmeyer, A. K., Damuth, J. D., DiMichele, W. A., Potts, R., Sues, H.-D., and Wing, S. L., eds. Terrestrial ecosystems through time. University of Chicago Press, Chicago.Google Scholar
Wolfe, A. P., and Edlund, M. B. 2005. Taxonomy, phylogeny, and paleoecology of Eoseira wilsoni gen. et sp. nov., a Middle Eocene diatom (Bacillariophyceae: Aulacoseiraceae) from lake sediments at Horsefly, British Columbia, Canada. Canadian Journal of Earth Sciences 42:243257.Google Scholar
Wolfe, J. A. 1980. Tertiary climates and floristic relationships at high latitudes in the Northern Hemisphere. Palaeogeography, Palaeoclimatology, Palaeoecology 30:313323.Google Scholar
Wolfe, J. A. 1994. Tertiary climate changes at middle latitudes of western North America. Palaeogeography, Palaeoclimatology, Palaeoecology 108:195205.Google Scholar
Wright, D. H. 1983. Species-energy theory: an expansion of the species-area theory. Oikos 41:496506.Google Scholar
Wright, S., Keeling, J., and Gillman, L. 2006. The road from Santa Rosalia: a faster tempo of evolution in tropical climates. Proceedings of the National Academy of Sciences USA 103:77187722.Google Scholar
Zachos, J. C., Dickens, G. R., and Zeebe, R. E. 2008. An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature 451:279283.Google Scholar
Zanazzi, A., Kohn, M. J., MacFadden, B. J., and Terry, D. O. 2007. Large temperature drop across the Eocene-Oligocene transition in central North America. Nature 445:639642.Google Scholar
Zapata, F. A., Gaston, K. J., and Chown, S. L. 2003. Mid-domain models of species richness gradients: assumptions, methods and evidence. Journal of Animal Ecology 72:677690.Google Scholar
Zapata, F. A. 2005. The mid-domain effect revisited. American Naturalist 166:E144E148.Google Scholar
Ziegler, A. M., Parrish, J. M., Yao, J. P., Gyllenhaal, E. D., Rowley, D. B., Parrish, J. T., Nie, S. Y., Bekker, A., and Hulver, M. L. 1993. Early Mesozoic phytogeography and climate. Philosophical Transactions of the Royal Society of London B 341:297305.Google Scholar
Supplementary material: PDF

Archibald et al. supplementary material

Supplementary Material

Download Archibald et al. supplementary material(PDF)
PDF 3.1 MB