Published online by Cambridge University Press: 26 July 2017
The most tangible clues to the existence and lifestyle of extinct vertebrates are the fossilized bones preserved in sedimentary rocks. During the past two hundred years, scientists have excavated, prepared and reassembled the often fragmentary remains of dinosaurs, enabling them to reconstruct the size, proportions and general anatomy of these Mesozoic reptiles. However, the information available from the bones is not restricted to details of the hard tissues themselves. Bone is a living tissue that interacts with the soft tissues of the body and retains evidence of this interaction after death. As a result, paleontologists are able to use preserved bones and other hard tissues to predict traits of physiological processes and of soft tissues. Prime examples of this approach have been the attempts to predict the thermal regime of dinosaurs. Histological structure of bone has been shown to vary with thermal regime in living vertebrates (Ricqles, 1976; Reid, 1987), and the preserved fine-structure of fossilized dinosaur bone has allowed direct comparison with the bone of living vertebrates. Other examples of reconstruction of lifestyle and soft tissues from bony remains include use of the muscle scars on dinosaur bone to predict size and orientation of muscles (Gatesy, 1990), and of dentition and jaw geometry to predict dietary regime (Weishampel and Norman, 1989).