Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-17T11:24:02.116Z Has data issue: false hasContentIssue false

A battery of 12 microsatellite markers for genetic analysis of the Leishmania (Viannia) guyanensis complex

Published online by Cambridge University Press:  07 July 2010

V. ROUGERON*
Affiliation:
Génétique et Evolution des Maladies Infectieuses, IRD/CNRS/UMI (UMR 2724), Montpellier, F-34394, France
T. DE MEEÛS
Affiliation:
UMR 177 IRD-CIRAD “Laboratoire de Recherches et de Coordination sur les Trypanosomoses”, Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (Cirdes), 01 BP 454, Bobo-Dioulasso 01, Burkina-Faso CNRS, Délégation Languedoc-Roussillon, 1919, route de Mende – 34293 Montpellier cedex 5, France
M. HIDE
Affiliation:
Génétique et Evolution des Maladies Infectieuses, IRD/CNRS/UMI (UMR 2724), Montpellier, F-34394, France
E. WALECKX
Affiliation:
UR016 IRD, INLASA, Laboratoire d'entomologie médicale de La Paz, Bolivie
J. DEREURE
Affiliation:
Génétique et Evolution des Maladies Infectieuses, IRD/CNRS/UMI (UMR 2724), Montpellier, F-34394, France Laboratoire de Parasitologie – Mycologie, Montpellier, F 34090, France
J. AREVALO
Affiliation:
Instituto de medicina Tropical “Alexander von Humboldt,” Lima, Peru
A. LLANOS-CUENTAS
Affiliation:
Instituto de medicina Tropical “Alexander von Humboldt,” Lima, Peru
A. L. BAÑULS
Affiliation:
Génétique et Evolution des Maladies Infectieuses, IRD/CNRS/UMI (UMR 2724), Montpellier, F-34394, France
*
*Corresponding author: Laboratoire GEMI, UMR IRD/CNRS/UMI 2724, Centre IRD, 911, avenue Agropolis BP 64501, 34394 Montpellier Cedex 5, France. Tel: +33 4 67 41 62 26. Fax: +33 4 67 41 62 99. E-mail: rougeron.virginie@ gmail.com

Summary

We used 12 microsatellite markers developed for Leishmania braziliensis to genotype 28 strains of the main species of the Leishmania guyanensis complex (i.e. L. guyanensis and L. panamensis) collected in Ecuador and Peru. The important heterozygote deficits observed in these populations are similar with the previous data obtained in L. braziliensis and raise again the debate on the reproductive mode of these protozoan parasites. The data showed genetic polymorphism and geographical differentiation giving information on population structure of the L. guyanensis complex. Regarding the two species, this study enhances again the debate on the taxonomic status of the different isolates belonging to L. guyanensis s.l. since the results showed substantial heterogeneity within this species complex. In conclusion, this study increases the number of available microsatellite loci for L. guyanensis species complex and raises fundamental biological questions. It confirms that microsatellite markers constitute good tools for population genetic studies on parasites of this complex.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Balloux, F., Lehmann, L. and de Meeus, T. (2003). The population genetics of clonal and partially clonal diploids. Genetics 164, 16351644.CrossRefGoogle ScholarPubMed
Bañuls, A. L., Hide, M. and Prugnolle, F. (2007). Leishmania and the leishmaniases: a parasite genetic update and advances in taxonomy, epidemiology and pathogenicity in humans. Advances in Parasitology 64, 1109.CrossRefGoogle ScholarPubMed
Bañuls, A. L., Jonquieres, R., Guerrini, F., Le Pont, F., Barrera, C., Espinel, I., Guderian, R., Echeverria, R. and Tibayrenc, M. (1999). Genetic analysis of Leishmania parasites in Ecuador: are Leishmania (Viannia) panamensis and Leishmania (V.) guyanensis distinct taxa? The American Journal of Tropical Medicine and Hygiene 61, 838845.CrossRefGoogle ScholarPubMed
Brookfield, J. F. Y. (1996). A simple new method for estimating null allele frequency from heterozygote deficiency. Molecular Ecology 5, 453455.CrossRefGoogle ScholarPubMed
De Meeûs, T., McCoy, K. D., Prugnolle, F., Chevillon, C., Durand, P., Hurtrez-Boussès, S. and Renaud, F. (2007 a). Population genetics and molecular epidemiology or how to “débusquer la bête”. Infection Genetics and Evolution 7, 308332.CrossRefGoogle Scholar
De Meeûs, T., Prugnolle, F. and Agnew, P. (2007 b). Asexual reproduction: genetics and evolutionary aspects. Cellular and Molecular Life Sciences 64, 13551372.CrossRefGoogle ScholarPubMed
Gondet, J. (2002). FSTAT, a program to estimate and test gene diversities and fixation indices, version 2.9.3.2. Available at: http://www2.unil.ch/popgen/software/fstat.htm.Google Scholar
Goudet, J. (1995). FSTAT (Version 1.2): A computer program to calculate F-statistics. Journal of Heredity 86, 485486.CrossRefGoogle Scholar
Hedrick, P. W. (2005). A standardized genetic differentiation measure. Evolution 59, 16331638.Google ScholarPubMed
Huson, D. H. (1998). SplitsTree: analyzing and visualizing evolutionary data. Bioinformatics 14, 6873.CrossRefGoogle ScholarPubMed
Nei, M. and Chesser, R. K. (1983). Estimation of fixation indices and gene diversities. Annals of Human Genetics 47, 253259.CrossRefGoogle ScholarPubMed
Oddone, R. S. C., Schönian, G., dos Santos de Sousa, C., Cupolillo, E., Espinosa, D., Arevalo, J., Noyes, H., Mauricio, I. and Kuhls, K. (2009). Development of a multilocus microsatellite typing 1 approach for discriminating strains of the Leishmania subgenus (L.) Viannia. Journal of Clinical Microbiology 47, 28182825.CrossRefGoogle Scholar
Paetkau, D. and Strobeck, C. (1995). The molecular basis and evolutionary history of a microsatellite null allele in bears. Molecular Ecology 4, 519520.CrossRefGoogle ScholarPubMed
Rougeron, V., Meeûs, T. D., Hide, M., Waleckx, E., Bermudez, H., Arevalo, J., Llanos-Cuentas, A., Dujardin, J.-C., Doncker, S. D., Ray, D. L., Ayala, F. J. and Bañuls, A.-L. (2009). Extreme inbreeding in Leishmania braziliensis. Proceedings of the National Academy of Sciences, USA 106, 1022410229.CrossRefGoogle ScholarPubMed
Rougeron, V., Waleckx, E., Hide, M., De Meeus, T., Arevalo, J., Llanos-Cuentas, A. and Banuls, A. L. (2008). A set of 12 microsatellite loci for genetic studies of Leishmania braziliensis. Molecular Ecology Resources 8, 351353.CrossRefGoogle ScholarPubMed
Russell, R., Iribar, M. P., Lambson, B., Brewster, S., Blackwell, J. M., Dye, C. and Ajioka, J. W. (1999). Intra and inter-specific microsatellite variation in the Leishmania subgenus Viannia. Molecular and Biochemical Parasitology 103, 7177.CrossRefGoogle ScholarPubMed
Saitou, N. and Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4, 406425.Google Scholar
Van Oosterhout, C., Hutchinson, W. F., Wills, D. P. M. and Shipley, P. (2004). MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Molecular Ecology Notes 4, 535538.CrossRefGoogle Scholar
Weir, B. S. and Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution 38, 13581370.Google ScholarPubMed
World Health Organization (2002). Leishmaniases. http://who.int/zoonoses/diseases/leishmaniasis/en.Google Scholar
Wolday, D., Berhe, N., Akuffo, H., Desjeux, P. and Britton, S. (2001). Emerging Leishmania/HIV co-infection in Africa. Medical Microbiology and Immunology 190, 6567.CrossRefGoogle ScholarPubMed
Wright, S. (1965). The interpretation of population structure by F-statistics with special regard to system of mating. Evolution 19, 395420.CrossRefGoogle Scholar