Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T07:15:03.320Z Has data issue: false hasContentIssue false

Blood schizontocidal activity of azithromycin and its combination with α/β arteether against multi-drug resistant Plasmodium yoelii nigeriensis, a novel MDR parasite model for antimalarial screening

Published online by Cambridge University Press:  08 June 2005

R. TRIPATHI
Affiliation:
Division of Parasitology, P.O. Box No. 173, Central Drug Research Institute, Chattar Manzil Palace, Lucknow, 226001, India
S. DHAWAN
Affiliation:
C.I.M.A.P., Lucknow, India
G. P. DUTTA
Affiliation:
Emeritus Scientist, C.S.I.R., C.D.R.I., Lucknow, India

Abstract

Many different drug-resistant lines of rodent malaria are available as screening models. It is obligatory to screen new compounds for antimalarial activity against a series of resistant lines in order to identify a compound with potential for the treatment of multi-drug resistant (MDR) malaria infections. Instead of using a battery of resistant lines, a single MDR Plasmodium yoelii nigeriensis strain that shows a wide spectrum of drug resistance to high doses of chloroquine, mepacrine, amodiaquine, mefloquine, quinine, quinidine, halofantrine as well as tetracyclines, fluoroquinolines and erythromycin, was used to assess the blood schizontocidal efficacy of a new macrolide azithromycin and other antibiotics. The present study shows that only azithromycin has the potential to control an MDR P. y. nigeriensis infection in Swiss mice, provided the treatment with a dose of 50–100 mg/kg/day by oral route is continued for a period of 7 days. Tetracycline, oxytetracycline, doxycyline, erythromycin, ciprofloxacin and norfloxacin, although active in vitro, failed to protect the mice. Tetracycline, ciprofloxacin and norfloxacin combinations with chloroquine did not control the infection. Additionally, the antimalarial efficacy of azithromycin can be potentiated with the addition of arteether, which is an ethyl ether derivative of artemisinin. A total (100%) curative effect has been obtained with a shorter regimen of 4 days only.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andersen, S. L., Ager, A., Greevy, P. M. C., Scheuster, B. G., Wesche, D., Kuschmer, R., Ohrt, C., Ellis, W., Rossan, R. and Berman, J. ( 1995). Activity of azithromycin as a blood schizontocide against rodent and human plasmodia in vivo. American Journal of Tropical Medicine and Hygiene 52, 159161.CrossRefGoogle Scholar
Andersen, S. L., Oloo, A. J., Gordon, D. M., Ragama, O. B., Aleman, G. M., Berman, J. D., Tang, D. B., Dunne, M. W. and Shanks, G. D. ( 1998). Successful double-blinded, randomized, placebo-controlled field trial of azithromycin and placebo-controlled field trial of azithromycin and doxycycline as prophylaxis, for malaria in western Kenya. Clinical Infectious Diseases 1, 146150.CrossRefGoogle Scholar
De Vries, P. I., Le, N. H., Le, T. D., Ho, P. L., Nguyen, V. N., Trinh, K. A. and Kager, P. A. ( 1999). Short course of azithromycin/artesunate against falciparum malaria: no full protection against recrudescence. Tropical Medicine and International Health 4, 407408.Google Scholar
Degerli, K., Kilimcioglu, A. A., Kurt, O., Tamay, T. and Qzbilgin, A. ( 2003). Efficacy of azithromycin in a murine Toxoplasmosis model, employing a Toxoplasma gondii strain from Turkey. Acta Tropica 88, 4550.CrossRefGoogle Scholar
Dutta, G. P. and Pande, A. ( 1986). Development of chloroquine resistance in experimental P. yoelii nigeriensis malaria in mice. Second National Conference of Parasitology, CDRI, Lucknow, p. 9 (abstract).
Dutta, G. P. and Singh, P. P. ( 1979). Blood schizontocidal activity of some antibiotics against Plasmodium knowlesi infection in Assamese monkey. Indian Journal Medical Research 70 (Suppl.), 9194.Google Scholar
Dutta, G. P., Bajpai, R. and Vishwakarma, R. A. ( 1989). Antimalarial efficacy of arteether against multiple drug resistant strain of Plasmodium yoelii nigeriensis. Pharmacological Research 21, 415419.CrossRefGoogle Scholar
Geary, T. G. and Jensen, J. B. ( 1983). Effect of antibiotics on Plasmodium falciparum in vitro. American Journal of Tropical Medicine and Hygiene 32, 221225.CrossRefGoogle Scholar
Gingras, B. A. and Jensen, J. B. ( 1993). Activity of azithromycin (CP-62993) and erythromycin against chloroquine sensitive and chloroquine resistant strains of Plasmodium falciparum in vitro. American Journal of Tropical Medicine and Hygiene 47, 378383.Google Scholar
Hill, J. ( 1975). The activity of some antibiotics and long acting compounds against the tissue stages of Plasmodium berghei. Annals of Tropical Medicine and Parasitology 69, 421427.CrossRefGoogle Scholar
Krudsood, S., Buchachart, K., Chalermrut, K., Charusabha, C., Treeprasertsuk, S., Haoharn, O., Duangdee, C. and Looareesuwam, S. ( 2002). A comparative clinical trial of combinations of dihydroartemisinin plus mefloquine for treatment of multidrug resistant falciparum malaria. Southeast Asian Journal of Tropical Medicine and Public Health 33, 525531.Google Scholar
Krudsood, S., Silachamron, U., Wilairatana, P. Singhasivanon, P., Phumratanaprapin, W., Chalermrut, K., Phophak, N. and Popa, C. ( 2000). A randomized clinical trial of combinations of artesunate and azithromycin for treatment of uncomplicated Plasmodium falciparum malaria in Thailand. Southeast Asian Journal Tropical Medicine and Public Health 31, 801807.Google Scholar
Lewis, C. ( 1968). Antiplasmodial activity of 7-halogenated lincomycins. Journal of Parasitology 54, 169170.CrossRefGoogle Scholar
Lode, H., Borner, K., Koeppe, P. and Schaberg, T. ( 1996). Azithromycin review of key chemical, pharmacokinetics and microbiological features. Antimicrobial Agents and Chemotherapy 37 (Suppl. C), 18.CrossRefGoogle Scholar
Mahmoudi, N., Ciceron, L., Eranetich, J., Farhati, K., Silvie, O., Eling, W., Sauerwein, R., Danis, M., Mazier, D. and Derouin, F. ( 2003). In vitro activities of 25 quinolones and fluoroquinolones against liver and blood stage Plasmodium spp. Antimicrobial Agents and Chemotherapy 47, 26362639.CrossRefGoogle Scholar
Na-Bangchang, K., Kanda, T., Tipawangso, P., Thanavibul, A., Suprakob, K., Ibrahim, M., Wattanagoon, Y. and Karbwang, J. ( 1996). Activity of artemether azithromycin versus artemether-doxycycline in the treatment of multiple drug resistant falciparum malaria. South East Asia Journal of Tropical Medicine and Public Health 3, 522525.Google Scholar
NATIONAL ANTIMALARIA PROGRAMME (NAMP) REPORT. ( 2003). Directorate of the National Antimalaria Programme, Ministry of Health and Family Welfare (Government of India), New Delhi.
Peters, W. ( 1987). Chemotherapy and Drug Resistance in Malaria, 2nd Edn. Academic Press, London.
Peters, W., Jefford, C. W., Robinson, B. L. and Rossier, J. C. ( 1993 a). The chemotherapy of rodent malaria. XLIX. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine resistant parasites. Part 2: Structure activity studies on cis-fused cyclopenteno-1,2,4-trioxanes (fenozans) against drug-sensitive and drug-resistant lines of P. berghei and P. yoelii sp. in vivo. Annals of Tropical Medicine and Parasitology 87, 916.Google Scholar
Peters, W., Robinson, B. L., Rossier, J. C. and Jefford, C. W. ( 1993 b). The chemotherapy of rodent malaria. XLVIII. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine resistant parasites. Part 1: Studies leading to the development of novel cis-fused bicyclic cyclopenteno derivatives. Annals of Tropical Medicine and Parasitology 87, 17.Google Scholar
Peters, W., Robinson, B. L., Tovey, G., Rossier, J. C. and Jefford, C. W. ( 1993 c). The chemotherapy of rodent malaria. L. The activities of some synthetic 1,2,4-trioxanes against chloroquine-sensitive and chloroquine resistant parasites. Part 3: Observations on ‘Fenozan-50 F,’ a difluorinated 3,3-spirocyclopentane 1,2,4 trioxane. Annals of Tropical Medicine and Parasitology 87, 111123.Google Scholar
Puri, S. K. and Dutta, G. P. ( 1982). Antibiotics in the chemotherapy of malaria. Progress in Drug Research 26, 167205.CrossRefGoogle Scholar
Puri, S. K. and Dutta, G. P. ( 1989). Spectrum of the antimalarial activity of a new microlide antibiotic midecamycin in mice and monkeys. Chemotherapy 35, 187197.CrossRefGoogle Scholar
Puri, S. K. and Singh, N. ( 2000). Azithromycin: Antimalarial profile against blood and sporozite-induced infections in mice and monkeys. Experimental Parasitology 94, 814.CrossRefGoogle Scholar
Remme, J. H. F., Blas, E., Chitsulo, L. Desjeux, P. M. P., Engers, H. D., Kanyok, T. P., Kayondo, J. F. K., Kioy, D. W., Kumaraswami, V., Lazdins, J. K., Nunn, P. P., Oduola, A., Ridley, R. G., Joure, Y. T., Zicker, F. and Morel, C. M. ( 2002). Strategic emphasis for tropical disease research: a TDR prespective. Trends in Parasitology 18, 421442.CrossRefGoogle Scholar
Sharma, V. P. ( 1998). Roll back malaria. Current Science 75, 756757.Google Scholar
Singh, N. and Puri, S. K. ( 1996). Blood schizontocidal profile of fluoroquinolone antibiotics against chloroquine resistant murine malaria. Journal of Parasitic Diseases 20, 4548.Google Scholar
Strath, M., Finnigan, T. S., Gardner, M., Williamson, D. and Wilson, I. ( 1993). Antimalarial activity of rifampicin in vitro and in rodent models. Transactions of the Royal Society Tropical Medicine Hygiene 87, 211216.CrossRefGoogle Scholar
Taylor, W. R., Ritchie, T. L., Fryauff, D. J., Picarima, H., Ohrt, C., Tang, D., Braitman, D., Murphy, G. S., Widjaja, H., Tjitra, E., Ganjar, A., Jones, T. R., Baeri, H. and Berman, J. ( 1999). Malaria prophylaxis using azithromycin a double-blind, placebo-controlled trial in Irian Jaya, Indonesia. Clinical Infectious Diseases 28, 7481.CrossRefGoogle Scholar
Taylor, W. R, Ritchie, T. L., Fryauff, D. J., Ohrt, C., Picarima, H., Tang, D., Murphy, G. S., Widjaja, H., Braitman, D., Tjitra, E., Ganjar, A., Jones, T. R., Basri, H. and Berman, J. ( 2003). Tolerability of azithromycin as malaria prophylaxis in adults in Northeast Papua, Indonesia. Antimicrobial Agents and Chemotherapy 47, 21992203.CrossRefGoogle Scholar
Tarlow, M. J., Block, S. L., Harris, J. and Kolokathis, A. ( 1997). Future indications for macrolides. Pediatric Infection Disease Journal 16, 457462.CrossRefGoogle Scholar
Tripathi, K. D., Sharma, A. K., Valecha, N. and Biswas, S. ( 1993). In vitro activity of fluoroquinolones against chloroquine resistant and chloroquine sensitive P. falciparum. Indian Journal of Malariology 30, 67.Google Scholar
WORLD HEALTH ORGANIZATION ( 1999). Removing obstacles to healthy development. WHO Report on Infectious Diseases. World Health Organization, Geneva.
Yeo, A. E. and Rieckmann, K. H. ( 1995). Increased antimalarial activity of azithromycin during prolonged exposure of Plasmodium falciparum in vitro. International Journal for Parasitology 4, 531532.CrossRefGoogle Scholar
Zuckerman, J. M. and Kaye, K. M. ( 1995). The newer macrolides. Infecious Disease Clinics of North America 731745.Google Scholar