Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-17T09:16:48.475Z Has data issue: false hasContentIssue false

Characterization of a high molecular weight protective antigen of Plasmodium yoelli

Published online by Cambridge University Press:  06 April 2009

A. A. Holder
Affiliation:
Department of Molecular Biology, The Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS
R. R. Freeman
Affiliation:
Department of Molecular Biology, The Wellcome Research Laboratories, Langley Court, Beckenham, Kent BR3 3BS

Summary

A 230000 molecular weight Plasmodium yoelii protective antigen was characterized. Two monoclonal antibodies against P. yoelii immunoprecipitated the 230000 mol. wt protein and a number of lower molecular weight polypeptides. These polypeptides were shown by peptide mapping and specific antibody binding to be fragments of the large protein. Iodination experiments suggested that the lower molecular weight species may be present on the surface of the merozoite. The protein was found not to be glycosylated. By serology, related antigens were shown to be associated with blood-stage schizonts of P. vinckei subspp., P. chabaudi subspp. and P. falciparum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boyle, D. B., Newbold, C. I., Smith, C. C. & Brown, K. N. (1982). Monoclonal antibodies that protect in vivo against Plasmodium chabaudi recognize a 250000-dalton parasite polypeptide. Infection and Immunity 38, 94102.CrossRefGoogle ScholarPubMed
Deans, J. A., Alderson, T., Thomas, A. W., Mitchell, G. H., Lennox, E. S. & Cohen, S. (1982). Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clinical and Experimental Immunology 49, 297309.Google ScholarPubMed
Epstein, N., Miller, L. H., Kaushel, D. C., Udeinya, I. J., Rener, J., Howard, R. J., Asofsky, R., Sikawa, M. & Hess, R. L. (1981). Monoclonal antibodies against a specific surface determinant on malarial (Plasmodium knowlesi) merozoites block erythrocyte invasion. Journal of Immunology 127, 212–17.CrossRefGoogle ScholarPubMed
Freeman, R. R. & Holder, A. A. (1983). Light microscope morphology of Plasmodium falciparum during a synchronized growth cycle in vitro. Annals of Tropical Medicine and Parasitology 77, 95–6.CrossRefGoogle ScholarPubMed
Freeman, R. R., Trejdosiewicz, A. J. & Cross, G. A. M. (1980). Protective monoclonal antibodies recognizing stage-specific merozoite antigens of a rodent malaria parasite. Nature, London 284, 366–8.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1981). Immunization against blood-stage rodent malaria using purified parasite antigens. Nature, London 294, 361–4.CrossRefGoogle ScholarPubMed
Holder, A. A. & Freeman, R. R. (1982). Biosynthesis and processing of a Plasmodium falciparum schizont antigen recognized by immune serum and a monoclonal antibody. Journal of Experimental Medicine 156, 1528–38.CrossRefGoogle ScholarPubMed
Holder, A. A., Freeman, R. R. & Newbold, C. I. (1983). Serological cross-reaction between high molecular weight proteins synthesized in blood schizonts of Plasmodium yoelii, Plasmodium chabaudi and Plasmodium falciparum. Molecular and Biochemical Parasitology 9, 191–6.CrossRefGoogle ScholarPubMed
Kessler, S. W. (1975). Rapid isolation of antigens from cells with staphylococcal protein A antibody absorbent: parameters of the interaction of antibody antigen complexes with protein A. Journal of Immunology 115, 1617–24.CrossRefGoogle Scholar
Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680–5.CrossRefGoogle ScholarPubMed
Matus, A., Pehling, G., Ackermann, M. & Maeder, J. (1980). Brain postsynaptic densities: their relationship to glial and neuronal filaments. Journal of Cell Biology 87, 346–59.CrossRefGoogle ScholarPubMed
Newbold, C. I., Boyle, D. B., Smith, C. C. & Brown, K. N. (1982). Identification of a schizont-and species-specific surface glycoprotein on erythrocytes infected with rodent malarias. Molecular and Biochemical Parasitology 5, 4554.CrossRefGoogle ScholarPubMed
Perrin, L. H. & Dayal, R. (1982). Immunity to asexual erythrocytic stages of Plasmodium falciparum: role of defined antigens in the humoral response. Immunological Reviews 61, 245–69.CrossRefGoogle ScholarPubMed
Snary, D. & Hudson, L. (1979). Trypanosoma cruzi cell surface proteins: identification of one major glycoprotein. FEBS Letters 100, 166–70.CrossRefGoogle ScholarPubMed
Towbin, H., Staehelin, T. & Gordon, J. (1979). Elecrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of Sciences, USA 76, 4350–4.CrossRefGoogle Scholar
Voller, A. & O'Neill, P. (1971). Immunofluorescence method suitable for large-scale application to malaria. Bulletin of the World Health Organization 45, 524–9.Google ScholarPubMed