Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-24T17:30:39.299Z Has data issue: false hasContentIssue false

Construction and screening of a cDNA library from the triactinomyxon spores of Myxobolus cerebralis, the causative agent of salmonid Whirling Diseases

Published online by Cambridge University Press:  03 January 2006

M. EL-MATBOULI
Affiliation:
Institute of Zoology, Fish Biology and Fish Diseases, Faculty of Veterinary Medicine, University of Munich, Germany
H. SOLIMAN
Affiliation:
Institute of Zoology, Fish Biology and Fish Diseases, Faculty of Veterinary Medicine, University of Munich, Germany

Abstract

The ZAP Express cDNA library was constructed using mRNA extracted from the triactinomyxon spores of Myxobolus cerebralis. First-strand cDNA was synthesized using Moloney Murine leukaemia virus reverse transcriptase. Following second-strand cDNA synthesis, the double-stranded cDNA was digested with Xho I restriction enzyme, cDNA fragments less than 400 bp were removed and the remaining cDNA was ligated with the lambda ZAP Express vector. The recombinants were packaged in vitro using Gigapack III gold packaging extract. The primary cDNA library titre contained 0·5×106 clones, with 97% recombinant and only 3% non-recombinant clones. The cDNA library was then screened using the anti-triactinomyxon antibodies. Positive clones were selected and re-screened twice more to give a final selection of 526 clones. One clone (46-5) was selected randomly and subjected to in vivo excision of the pBK-CMV phagemid from the ZAP express vector. The sequence of the entire clone was obtained using rapid amplification of the cDNA ends. A search of the clone sequence against GenBank revealed that it related to ribosomal protein L23 and it had a high percentage similarity to this protein from different species. A conserved domain for ribosomal protein L23 was also identified in the clone sequence.

Type
Research Article
Copyright
2006 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alting-Mees, M., Hoener, P., Ardourel, D., Sorge, J. A. and Short, J. M. ( 1992). New lambda and phagemid vectors for prokaryotic and eukaryotic expression. Strategies in Molecular Biology 5, 5861.Google Scholar
Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. ( 1990). Basic local alignment search tool. Journal of Molecular Biology 215, 403410.CrossRefGoogle Scholar
Aviv, H. and Leder, P. ( 1972). Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose. Proceedings of the National Academy of Sciences, USA 69, 14081412.CrossRefGoogle Scholar
Becker, A., Marko, M. and Gold, M. ( 1977). Early events in the in vitro packaging of bacteriophage lambda DNA. Virology 78, 291305.CrossRefGoogle Scholar
Chomczyniski, P. and Sacchi, N. ( 1987). Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162, 156159.CrossRefGoogle Scholar
Elledge, S. J., Mulligan, J. T., Ramer, S. W., Spottswood, M. and Davis, R. W. ( 1991). λYes: Amultifunctional cDNA expression vector for the isolation of genes by complementation of yeast and Escherichia coli mutations. Proceedings of the National Academy of Sciences, USA 88, 17311735.CrossRefGoogle Scholar
El-Matbouli, M., Fischer-Scherl, T. and Hoffman, R. W. ( 1992). Present knowledge of the life cycle, taxonomy, pathology and therapy of some myxosporea spp. important for fresh water fish. Annual Review of Fish Diseases 3, 367402.CrossRefGoogle Scholar
El-Matbouli, M. and Hoffmann, R. W. ( 1998). Light and electron microscopic study on the chronological development of Myxobolus cerebralis in Tubifex tubifex to the actinosporean stage Triactinomyxon. International Journal for Parasitology 28, 192217.Google Scholar
El-Matbouli, M., Hoffmann, R. W. and Mandok, C. ( 1995). Light and electron microscopic observations on the rout of the triactinomyxon-sporoplasm of Myxobolus cerebralis from epidermis into rainbow trout (Oncorhynchus mykiss) cartilage. Journal of Fish Biology 46, 919935.Google Scholar
El-Matbouli, M., McDowell, T. S., Antonio, D. B., Andree, K. B. and Hedrick, R. P. ( 1999). Effect of water temperature on the development, release and survival of the Triactinomyxon stage of Myxobolus cerebralis in its oligochaete host. International Journal for Parasitology 29, 627641.CrossRefGoogle Scholar
Frohmann, M. A. ( 1994). One beyond classic RACE (rapid amplification of cDNA ends). PCR Methods and Applications 4, 540558.Google Scholar
Gerard, G. F. and D'Alessio, J. M. ( 1993). Reverse transcriptase (EC2.7.7.49): The use of cloned Moloney murine leukaemia virus reverse transcriptase to synthesis DNA from RNA. Methods in Molecular Biology 16, 7394.Google Scholar
Gu, S. Q., Peske, F., Wieden, H. J., Rodnina, M. V. and Wintermeyer, W. ( 2003). The signal recognation particle binds to protein L23 at the peptide exit of the Escherichia coli ribosome. RNA 9, 566573.CrossRefGoogle Scholar
Gubler, U. and Hoffman, B. J. ( 1983). A simple and very efficient method for generating cDNA libraries. Gene 25, 263269.CrossRefGoogle Scholar
Han, J. H. and Rutter, W. J. ( 1988). Isolation of intact mRNA and construction of full-length cDNA libraries: use of a new vector, Lambda gt22, and primer-adapters for directional cDNA cloning. In Genetic Engineering: Principles and Methods, vol. 10 ( ed. Setlow, J. K.), pp. 195219. Plenum Publishing, New York.CrossRef
Hedrick, R. P., El-Matbouli, M., Adkison, M. and Mac-Connell, E. ( 1998). Whirling disease: re-emergence among wild trout. Immunology Reviews 166, 365376.CrossRefGoogle Scholar
Hofer, B. ( 1903). Über die Drehkrankheit der Regenbogenforelle. Allgemeine Fischerei-Zeitung 8, 78.Google Scholar
Hoffman, G. L. ( 1970). Whirling disease of trout and salmon caused by Myxosoma cerebralis in the United States of America. Rivista Italiana Piscic Ittiopat 5, 2931.Google Scholar
Hoffman, G. L., Dunbar, C. E. and Bradford, A. ( 1962). Whirling disease of trout caused by Myxosoma cerebralis in the United States. Special Scientific Report. Fisheries 427, pp. 1521. U.S. Department of the Interior.
Huse, W. D. and Hansen, C. ( 1988). cDNA cloning redefined: a rapid, efficient, directional method. Strategies Molecular Biology 1, 13.Google Scholar
Jerpseth, B., Greener, A., Short, J. M., Viola, J. and Kretz, P. L. ( 1992). XL-1 Blue MRFE. coli cells: McrA, McrB, McrF, Mrr, HsdR derivative of XL-1 Blue cells. Strategies in Molecular Biology 5, 8183.Google Scholar
Kelley, G. O., Adkison, M. A., Leutenegger, C. M. and Hedrick, R. P. ( 2003). Myxobolus cerebralis: identification of a cathepsin Z-like protease gene (MyxCP-1) expressed during parasite development in rainbow trout, Oncorhynchus mykiss. Experimental Parasitology 105, 201210.CrossRefGoogle Scholar
Kelley, G. O., Beauchamp, K. A. and Hedrick, R. P. ( 2004 a). Phylogenetic comparison of the myxosporea based on an actin cDNA isolated from Myxobolus cerebralis. Journal of Eukaryotic Microbiology 51, 660663.Google Scholar
Kelley, G. O., Zagmutt-Vergara, F. J., Leutenegger, C. M., Adkison, M. A., Baxa, D. V. and Hedrick, R. P. ( 2004 b). Identification of a serine protease gene expressed by Myxobolus cerebralis during development in rainbow trout (Oncorhynchus mykiss). Diseases of Aquatic Organisms 59, 235248.Google Scholar
Kotewicz, M. L., Sampson, C. M., D'Alessio, J. M. and Gerard, G. F. ( 1988). Isolation of cloned Moloney murine leukaemia virus reverse transcriptase lacking ribonuclease H activity. Nucleic Acids Research 16, 265277.CrossRefGoogle Scholar
Kramer, G., Rauch, T., Rist, W., Vorderwülbecke, S., Patzelt, H., Schulze-Specking, A., Ban, N., Deuerling, E. and Bukau, B. ( 2002). L23 protein functions as a chaperone docking site on the ribosome. Nature, London 419, 171174.CrossRefGoogle Scholar
Kretz, P. L., Danylchuk, T., Hareld, W., Wells, S., Provost, G. S. and Short, J. M. ( 1994). Strategies in Molecular Biology 7, 4445.
Maguire, B. C. and Zimmermann, R. A. ( 2001). The ribosome in focus. Cell 104, 813816.CrossRefGoogle Scholar
Marchler-Bauer, A., Anderson, J. B., DeWeese-Scott, C., Fedorova, N. D., Geer, L. Y., He, S., Hurwitz, D. I., Jackson, J. D., Jacobs, A. R., Lanczycki, C. J., Liebert, C. A., Liu, C., Madej, T., Marchler, G. H., Mazumder, R., Nikolskaya, A. N., Panchenko, A. R., Rao, B. S., Shoemaker, B. A., Simonyan, V., Song, J. S., Thiessen, P. A., Vasudevan, S., Wang, Y., Yamashita, R. A., Yin, J. J. and Bryant, S. H. ( 2003). CDD: A curated Entrez database of conserved domain alignments. Nucleic Acids Research 31, 383387.CrossRefGoogle Scholar
Markiw, M. E. and Wolf, K. ( 1983). Myxosoma cerebralis (Myxozoa: Myxosporea) etiologic agent of salmonid whirling disease requires tubificid worm (Annelida: Oligochaeta) in its life cycle. Journal of Protozoology 30, 561564.CrossRefGoogle Scholar
McIntosh, K. B. and Bonham-Smith, P. C. ( 2001). Establishment of Arabidopsis thaliana ribosomal protein RPL 23A-1 as a functional homologue of Saccharomyces cerevisiae ribosomal protein L25. Plant Molecular Biology 46, 673682.CrossRefGoogle Scholar
Nattrass, G. and James, P. ( 2001). External parasite of live stock: gene library for sheep lice. South Australian Research and Development Institute. http://www.sardi.sa.gov.au/pages/livestock/mw/ahm/gene_library.htm:sectID=530&tempID=120
Nehring, R. B. and Walker, P. G. ( 1996). Whirling disease in the wild: the new reality in the intermountain west. Fisheries (Bethesda) 21, 2832.Google Scholar
Nissen, P., Hansen, J., Ban, N., Moore, P. B. and Steitz, T. A. ( 2000). The structural basis of ribosome activity in peptide bond synthesis. Science 289, 920930.CrossRefGoogle Scholar
Okayama, H. and Berg, P. ( 1982). High efficiency cloning of full-length cDNA. Molecular Cell Biology 2, 161170.CrossRefGoogle Scholar
Öhman, A., Alexey, R., Dontsova, M., Garber, B. M. and Härd, T. ( 2003). NMR structure of the ribosomal protein L23 from Thermus thermophilus. Journal of Biomolecular NMR 26, 131137.CrossRefGoogle Scholar
Pool, M. R., Stumm, J., Fulga, T. A., Sinning, I. and Dobberstein, B. ( 2002). Distinct modes of signal recognition particle interaction with the ribosome. Science 297, 13451348.CrossRefGoogle Scholar
Raleigh, E. A., Murray, N. E., Revel, H., Blumenthal, R. M., Westaway, D., Reith, A. D., Rigby, P. W., Elhai, J. and Hanahan, D. ( 1988). McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Research 16, 15631575.Google Scholar
Sambrook, J. and Russell, D. ( 2001). Molecular Cloning, a Laboratory Manual, 3rd Edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Schäperclaus, W. ( 1931). Die Drehkrankheit in der Forellenzucht und ihre Bekämpfung. Zeitschrift für Fischerei 29, 521567.Google Scholar
Short, J. M. and Sorge, J. A. ( 1992). In vivo excision properties of bacteriophage lambda ZAP expression vectors. Methods in Enzymology 216, 495508.CrossRefGoogle Scholar
Short, J. M., Fernandez, J. M., Sorge, J. A. and Huse, W. D. ( 1988). Lambda ZAP: a bacteriophage lambda expression vector with in vivo excision properties. Nucleic Acids Research 16, 75837600.CrossRefGoogle Scholar
Stürzenbaum, S. R., Parkinson, J., Blaxter, M., Morgan, A. J., Kille, P. and Georgiev, O. ( 2003). The earthworm EST project. Pedobiologia 47, 447451.CrossRefGoogle Scholar
Telesnitsky, A. and Goff, S. P. ( 1993). Two defective forms of reverse transcriptase can complement to restore retroviral infectivity. European Molecular Biology Organisation Journal 12, 44334438.Google Scholar
Ullers, R. S., Houben, E. N., Raine, A., ten Hagen-Jongman, C., Ehrmann, M., Oudega, B., Harms, N. and Luirink, J. ( 2003). Interplay of SRP and Trigger Factor at L23 near the nascent chain exit site on the E. coli ribosome. Journal of Cell Biology 161, 679684.Google Scholar
Whipps, C. M., El-Matbouli, M., Hedrick, R. P., Blazer, V. and Kent, M. L. ( 2004 a). Myxobolus cerebralis internal transcribed spacer 1 (ITS-1) sequences support recent spread of the parasite to North America and within Europe. Diseases of Aquatic Organisms 60, 105108.Google Scholar
Whipps, C. M., Grossel, G., Adlard, R. D., Yokoyama, H., Bryant, M. S., Munday, B. L. and Kent, M. L. ( 2004 b). Phylogeny of the Multivalvulidae (Myxozoa: Myxosporea) based upon comparative ribosomal DNA sequence analysis. Journal of Parasitology 90, 618622.Google Scholar
Willem, L., de Gier, J. and Luirink, J. ( 2003). The ribosome and YidC: new insights into the biogenesis of Escherichia coli inner membrane proteins. European Molecular Biology Organization Reports 4, 939943.Google Scholar
Wolf, K. and Markiw, M. E. ( 1984). Biology contravenes taxonomy in the Myxozoa: new discoveries show alternation of invertebrate and vertebrate hosts. Science 225, 14491452.CrossRefGoogle Scholar
Woodcock, D. M., Crowther, P. J., Doherty, J., Jefferson, S., DeCruz, E., Noyer-Weidner, M., Smith, S. S., Michael, M. Z. and Graham, M. W. ( 1989). Quantitative evaluation of Escherichia coli host strains for tolerance to cytosine methylation in plasmid and phage recombinants. Nucleic Acids Research 17, 34693478.CrossRefGoogle Scholar
Yang, Y. C., Ciarletta, A. B., Temple, P. A., Chung, M. P., Kovacic, S., Witek-Giannotti, J. S., Leary, A. C., Kriz, R., Donahue, R. E., Wong, G. G. and Clark, S. C. ( 1986). Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 47, 310.CrossRefGoogle Scholar