Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-27T01:53:10.521Z Has data issue: false hasContentIssue false

Does Litomosoides sigmodontis synthesize dimethylethanolamine from choline?

Published online by Cambridge University Press:  25 September 2007

K. M. HOUSTON
Affiliation:
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK
S. A. BABAYAN
Affiliation:
Institute of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
J. E. ALLEN
Affiliation:
Institute of Evolution, Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, West Mains Road, Edinburgh EH9 3JT, UK
W. HARNETT*
Affiliation:
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, UK
*
*Corresponding author: Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, The John Arbuthnott Building, 27 Taylor Street, Glasgow G4 0NR, UK. Tel: 0141 548 3725. Fax: 0141-552-2562. E-mail: w.harnett@strath.ac.uk

Summary

Juvenile female Litomosoides sigmodontis secrete a protein (Juv-p120) highly modified with dimethylethanolamine (DMAE). In an attempt to establish the source of this decoration worms were pulsed with [3H]-choline and [3H]-ethanolamine and the radio-isotope labelled products analysed. Both isotope labels were successfully taken up by the worms, as demonstrated by labelling of phospholipids with [3H]-choline, being predominantly incorporated into phosphatidylcholine and [3H]-ethanolamine into phosphatidylethanolamine. Isotope labelling of phosphatidylethanolamine was particularly striking with the worms taking up ~30 times as much labelled ethanolamine as choline. It was possible to detect faint labelling of Juv-p120 with [3H]-ethanolamine after prolonged exposure periods but, unlike the situation with the phospholipids, it was much more readily labelled with [3H]-choline. When pulsing with [3H]-ethanolamine it was also possible to detect isotope-labelled phosphatidylcholine, which may ultimately account for the low levels of labelling of Juv-p120. Overall our results raise the previously unconsidered but intriguing possibility that in L. sigmodontis, choline may be the precursor of DMAE.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Al-Qaoud, K. M., Fleischer, B. and Hoerauf, A. (1998). The Xid defect imparts susceptibility to experimental murine filariosis – association with a lack of antibody and IL-10 production by B cells in response to phosphorylcholine. International Immunology 10, 1725.CrossRefGoogle Scholar
Babayan, S., Ungeheuer, M. N., Marin, C., Attout, T., Belnoue, E., Snounou, G., Renia, L., Korenaga, M. and Bain, O. (2003). Resistance and susceptibility to filarial infection with Litomosoides sigmodontis are associated with early differences in parasite development and in localized immune reactions. Infection and Immunity 71, 68206829.CrossRefGoogle ScholarPubMed
Brendza, K. M., Haakenson, W., Cahoon, R. E., Hicks, L. M., Palavilli, L. H., Chiapelli, B. J., McLaird, M., McCarter, J. P., Williams, D. J., Hresko, M. C. and Jez, J. M. (2007). Phosphoethanolamine N-Methyltransferase (PMT-1) catalyses the first reaction of a new pathway for phosphocholine biosynthesis in Caenorhabditis elegans. The Biochemical Journal, e. publication 22nd February.CrossRefGoogle ScholarPubMed
Cipollo, J. F., Awad, A., Costello, C. E., Robbins, P. W. and Hirschberg, C. B. (2004). Biosynthesis in vitro of Caenorhabditis elegans phosphorylcholine oligosaccharides. Proceedings of the National Academy of Sciences, USA 101, 30043008.CrossRefGoogle ScholarPubMed
Diagne, M., Petit, G., Liot, P., Cabaret, J. and Bain, O. (1990). The filarial Litomosoides galizai in mites: microfilarial distribution in the host and regulation of the transmission. Annales de Parasitologie Humaine et Comparée 65, 193199.CrossRefGoogle Scholar
Goodridge, H. S., Marshall, F. A., Else, K. J., Houston, K. M., Eagan, C., Al-Riyami, L., Liew, F.-Y., Harnett, W. and Harnett, M. M. (2005). Immunomodulation via novel use of TLR4 by the filarial nematode phosphorylcholine (PC)-containing secreted product, ES-62. Journal of Immunology 174, 284293.CrossRefGoogle Scholar
Harnett, W., Grainger, M., Worms, M. J. and Parkhouse, R. M. E. (1989). Evaluation of the potential of excretions-secretions (E-S) of Litomosoides carinii to substitute for human filarial E-S. Parasitology Research 76, 3944.CrossRefGoogle Scholar
Harnett, W. and Harnett, M. M. (2001). Modulation of the host immune system by phosphorylcholine-containing glycoproteins secreted by parasitic filarial nematodes. Biochimica et Biophysica Acta 1539, 715.CrossRefGoogle ScholarPubMed
Harnett, W., Meghji, M., Worms, M. J. and Parkhouse, R. M. E. (1986). Quantitative and qualitative changes in production of excretions/secretions by Litomosoides carinii during development in the jird (Meriones unguiculatus). Parasitology 93, 317331.CrossRefGoogle ScholarPubMed
Harnett, W., Patterson, M., Copeman, D. B. and Parkhouse, R. M. E. (1994). Biosynthetic radiolabelling of excretions-secretions of adult male Onchocerca gibsoni. International Journal for Parasitology 24, 543550.CrossRefGoogle ScholarPubMed
Harnett, W., Worms, M. J., Grainger, M., Pyke, S. D. M. and Parkhouse, R. M. E. (1990). Association between circulating antigen and parasite load in a model filarial system, Acanthocheilonema viteae in jirds. Parasitology 101, 435444.CrossRefGoogle Scholar
Hintz, M., Kasper, M., Stahl, B., Geyer, R., Kalinowski, H.-O., Kras, M., Kuhnhardt, S., Schott, H.-H., Conraths, F., Zahner, H. and Stirm, A. (1996). Dimethylaminoethanol is a major component of the Litomosoides carinii microfilarial sheath. Molecular and Biochemical Parasitology 76, 325328.CrossRefGoogle Scholar
Hintz, M., Schares, G., Taubert, A., Geyer, R., Zahner, H., Stirm, S. and Conraths, F. J. (1998). Juvenile female Litomosoides sigmodontis produce an excretory/secretory antigen (Juv-p120) highly modified with dimethylaminoethanol. Parasitology 117, 265271.CrossRefGoogle ScholarPubMed
Houston, K. M., Cushley, W. and Harnett, W. (1997). Studies on the site and mechanism of attachment of phosphorylcholine to a filarial nematode secreted glycoprotein. Journal of Biological Chemistry 272, 15271533.CrossRefGoogle ScholarPubMed
Houston, K. M. and Harnett, W. (1999). Mechanisms underlying the transfer of phosphorylcholine to filarial nematode glycoproteins – a possible role for choline kinase. Parasitology 118, 311318.CrossRefGoogle ScholarPubMed
Houston, K. M. and Harnett, W. (2004). Structure and synthesis of nematode phosphorylcholine-containing glycoconjugates. Parasitology 129, 655661.CrossRefGoogle Scholar
Houston, K. M., Lochnit, G., Geyer, R. and Harnett, W. (2002). Investigation of the nature of potential phosphorylcholine donors for filarial nematode glycoconjugates. Molecular and Biochemical Parasitology 123, 5566.CrossRefGoogle ScholarPubMed
Lochnit, G. and Geyer, R. (2003). Evidence for the presence of the Kennedy and Bremer-Greenberg pathways in Caenorhabditis elegans. Acta Biochimica Polonica 50, 12391243.CrossRefGoogle ScholarPubMed
Petit, G., Diagne, M., Marechal, P., Owen, D., Taylor, D. and Bain, O. (1992). Maturation of the filarial Litomosoides sigmodontis in BALB/c mice: comparative susceptibility of nine other inbred strains. Annales de Parasitologie Humaine et Comparée 67, 144150.CrossRefGoogle Scholar
Rhodes, D. and Hanson, A. D. (1993). Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 44, 357384.CrossRefGoogle Scholar
Rozman, D. and Waterman, M. R. (1998). Lanosterol 14α-demethylase (CYP51) and spermatogenesis. Drug Metabolism and Deposition 26, 11991201.Google ScholarPubMed
Schares, G., Schutzle, B., Zahner, H. and Conraths, F. J. (1994). Surface antigens of Litomosoides carinii microfilariae: agglutinating antibodies react with sheath components of 40 and 120 kiloDalton molecular mass. Parasitology 109, 7382.CrossRefGoogle Scholar
Smith, V. P., Selkirk, M. E. and Gounaris, K. (1996). Identification and composition of lipid classes in surface and somatic preparations of adult Brugia malayi. Molecular and Biochemical Parasitology 78, 105116.CrossRefGoogle ScholarPubMed