Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-23T23:21:22.703Z Has data issue: false hasContentIssue false

Echinococcus granulosus: specificity of amino acid transport systems in protoscoleces

Published online by Cambridge University Press:  06 April 2009

S. A. Jeffs
Affiliation:
Parasitology Research Laboratory, University of Keele, Keele, Staffs ST5 5BG
C. Arme
Affiliation:
Parasitology Research Laboratory, University of Keele, Keele, Staffs ST5 5BG

Summary

Protoscoleces of Echinococcus granulosus absorb the l-amino acids proline, methionine, leucine, alanine, serine, phenylalanine, lysine and glutamic acid by a combination of mediated transport and diffusion. All eight amino acids were accumulated against a concentration gradient. Comparison of Kt and Vmax values suggests that a low affinity for a particular compound is compensated for by a relatively larger number of transport sites for that compound. Four systems serve for the transport of the eight substrates studied: 2 for neutral (EgNl, EgN2) and 1 each for acidic (EgA) and basic (EgB) amino acids. All eight amino acids are incorporated into protein to varying degrees and substantial portions of absorbed l-alanine and l-methionine are metabolized into other compounds.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agosin, M. (1957). Studies on the metabolism of Echinococcus granulosus II. Some observations on the carbohydrate metabolism of hydatid cyst scolices. Experimental Parasitology 6, 586–93.CrossRefGoogle Scholar
Agosin, M. & Aravena, L. (1959). Studies on the metabolism of Echinococcus granulosus III. Glycolysis, with special reference to hexokinases and related glycolytic enzymes. Biochimica et Biophysica Acta 34, 94102.CrossRefGoogle Scholar
Agosin, M. & Abavena, L. (1960 a). Studies on the metabolism of Echinococcus granulosus IV. Enzymes of the pentose phosphate pathway. Experimental Parasitology 10, 2838.CrossRefGoogle Scholar
Agosin, M. & Aravena, L. (1960 b). Studies on the metabolism of Echinococcus granulosus V. The phosphopentose isomerase of hydatid cyst scolices. Enzymologia 22, 281–94.Google Scholar
Agosin, M. & Repetto, Y. (1967). Studies on the metabolism of Echinococcus granulosus XI. Protein synthesis in scolices. Experimental Parasitology 21, 195208.CrossRefGoogle Scholar
Arme, C. & Coates, A. (1973). Hymenolepis diminuta: active transport of α-aminoisobutyric acid by cysticercoid larvae. International Journal for Parasitology 3, 553–60.CrossRefGoogle ScholarPubMed
Eckert, J. (1986). Prospects for the treatment of the metacestode of Echinococcus. In Biology of Echinococcus and Hydatid Disease (ed. Thompson, R. C. A.), pp. 250–84. London: George Allen & Unwin.Google Scholar
Frayha, G. J. & Haddad, R. (1980). Comparative chemical composition of protoscolices and hydatid cyst fluid of Echinococcus granulosus (Cestoda). International Journal for Parasitology 10, 359–64.CrossRefGoogle ScholarPubMed
Harris, B. G. & Read, C. P. (1968). Studies on membrane transport III. Further characterisation of amino acid systems in Hymenolepis diminuta (Cestoda). Comparative Biochemistry and Physiology 26, 545–52.CrossRefGoogle Scholar
Jeffs, S. A. & Arme, C. (1984). Hymenolepis diminuta: protein synthesis in cysticercoids. Parasitology 88, 351–7.CrossRefGoogle Scholar
Jeffs, S. A. & Arme, C. (1985 a). Hymenolepis diminuta (Cestoda): uptake of cycloleucine by metacestodes. Comparative Biochemistry and Physiology 81 A, 495–9.CrossRefGoogle ScholarPubMed
Jeffs, S. A. & Arme, C. (1985 b). Hymenolepis diminuta: characterisation of the neutral amino acid transport loci of the metacestode. Comparative Biochemistry and Physiology 81 A, 387–90.CrossRefGoogle Scholar
Jeffs, S. A. & Arme, C. (1986). Echinococcus granulosus: absorption of cycloleucine and α-aminoisobutyric acid by protoscoleces. Parasitology 92, 153–63.CrossRefGoogle ScholarPubMed
Kilejian, A. A. (1966). Permeation of L-proline in the cestode, Hymenolepis diminuta. Journal of Parasitology 53, 1108–15.CrossRefGoogle Scholar
Lineweaver, H. & Burk, D. (1934). The determination of enzyme dissociation constants. Journal of the American Chemical Society 56, 658–66.CrossRefGoogle Scholar
Lussier, P. E., Podesta, R. B. & Mettrick, D. F. (1982). Hymenolepis diminuta: the non-saturable component of methionine uptake. International Journal for Parasitology 12, 265–70.CrossRefGoogle ScholarPubMed
MacInnis, A. J., Graff, D. J., Kilejian, A. A. & Read, C. P. (1976). Specificity of amino acid transport in the tapeworm Hymenolepis diminuta and its rat host. Rice University Studies 62, 183204.Google Scholar
McManus, D. P. & Smyth, J. D. (1982). Intermediary carbohydrate metabolism in protoscoleces of Echinococcus granulosus (horse and sheep strain) and E. multilocularis. Parasitology 84, 351–66.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Gamble, H. R. (1980). Membrane transport of aromatic amino acids by Hymenolepis diminuta (Cestoda). Parasitology 81, 395403.CrossRefGoogle ScholarPubMed
Pappas, P. W. & Read, C. P. (1973). Permeability and membrane transport in the larva of Taenia crassiceps. Parasitology 66, 3342.CrossRefGoogle ScholarPubMed
Pittman, R. G. & Fisher, F. M. Jr (1972). The membrane transport of glycerol by Hymenolepis diminuta. Journal of Parasitology 58, 742–9.CrossRefGoogle ScholarPubMed
Sanchez, F. A. & Sanchez, A. C. (1971). Estudio de algunas propiedades fisicas y compenentes quimicos del liquido y pared germinativa de quistes hydatidicos de diversas especies y de diferente localizacion. Revista Iberica Parasitologia 31, 347–66.Google Scholar