Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-25T08:35:05.507Z Has data issue: false hasContentIssue false

Effect of parasitism on plasma sex-specific proteins in Cyphocarax gilbert (Teleost, Curimatidae)

Published online by Cambridge University Press:  03 February 2005

L. GOMES DA SILVA
Affiliation:
Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
J. S. AZEVEDO
Affiliation:
Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil
M. A. SILVA-NETO
Affiliation:
Departamento de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
N. R. WILLE LIMA
Affiliation:
Departamento de Biologia Geral, Universidade Federal Fluminense, Rio de Janeiro, Brazil
M. DANSA-PETRETSKI
Affiliation:
Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense, Campos dos Goytacazes, Rio de Janeiro, Brazil

Abstract

Cyphocarax gilbert (Szidat, L., 1948) is a fish commonly found in coastal drainage of eastern Brazil. This fish is sometimes caught with signs of infection by the crustacean Riggia paranensis, a haematophagous parasite. A remarkable feature of infected fish is that they lack gonads. In this paper we have analysed the frequency of parasitism, the gonadal development of non-infected fish and the profile of plasma proteins in both infected and non-infected specimens. Two reproductive periods/year were observed, beginning in February and August. On average, 40% of fish were infected, in the Itabapoana River (Brazil). Sex-specific proteins were identified by electrophoresis. SDS-PAGE analysis demonstrated that a 143 kDa female-specific glycolipoprotein (FSP) is a calcium-binding phosphoprotein. FSP was isolated through ultracentrifugation and SDS-PAGE analysis showed that the native protein is composed of three polypeptides of 143, 100 and 70 kDa. Both FSP and a 33 kDa male-specific protein (MSP) are absent from infected fish plasma. FSP levels in female plasma changes with the developmental stage of gonads. Altogether these data suggest that the FSP corresponds to fish vitellogenin. Furthermore, the absence of the above-mentioned proteins in infected fish suggests that R. paranensis might interfere with the regular hormonal process of fish vitellogenesis.

Type
Research Article
Copyright
© 2005 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

ADLARD, R. D. & LESTER, J. G. ( 1994). Dynamic of the interaction between the parasitic isopod, Anilocra pomacentri, and the coral reef fish, Chromis nitida. Parasitology 94, 311324.CrossRefGoogle Scholar
ADLARD, R. D. & LESTER, R. J. G. ( 1995). The life cycle and biology of Anilocra pomacentri (Isopoda, Cymothoidae) and ectoparasitic isopod of coral-reef fish, Chromis nitida (Perciformes, Pomacentridae). Australian Journal of Zoology 43, 271281.CrossRefGoogle Scholar
ANDRADE, D. R. & GODINHO, H. ( 1983). Annual male reproductive cycle of the Brazilian teleost fish Leporinus silvestrii (Boulenger, 1902). Archives de Biologie (Bruxelles) 94, 114.Google Scholar
AZEVEDO, J. S., THOMÉ, M. P. M., GOMES DA SILVA, L., NOVELLI, R., DANSA-PETRETSKI, M. & WILLE LIMA, N. R. ( 2002). Parasitismo de Riggia paranensis (Crustacea, Cymothoidea) em populações de Cyphocharax gilbert (Teleostei, Curimatidae) do norte do estado do Rio de Janeiro. Boletim do Instituto de Pesca, São Paulo 28, 6169.Google Scholar
BRAGONI, G., ROMESTAND, B. & TRILLES, J. P. ( 1983). Cymothoadian parasitosis of the sea-dace (Dicentrarchus labrax Linnaeus, 1758) during breeding. II. Parasitic ecophysiology in the Diana pod. Annales de Parasitologie Humaine et Comparée 58, 593609.CrossRefGoogle Scholar
BUJO, H., HERMANN, M., LINDSTEDT, K. A., NIMPF, J. & SCHNEIDER, W. J. ( 1997). Low density lipoprotein receptor gene family members mediate yolk deposition. Journal of Nutrition 127 (Suppl.), 801S804S.CrossRefGoogle Scholar
CALLARD, I. P., RILEY, D. & PERES, L. ( 1990). Vertebrate vitellogenesis: molecular model for multihormonal control of gene regulation. Progress in Clinical and Biological Research 342, 343348.Google Scholar
CUTTING, J. A. & ROTH, T. F. ( 1973). Staining of phosphoproteins on acrylamide gel electropherograms. Analytical Biochemistry 54, 386394.CrossRefGoogle Scholar
DAVIS, B. J. ( 1964). Disc electrophoresis – II Methods and application to human serum proteins. Annals of the New York Academy of Sciences 121, 404427.CrossRefGoogle Scholar
HUIZINGA, H. W. ( 1972). Pathology of Artystone trysibia Schioedte (Isopoda: Cymothoidae), an endoparasitic isopod of South American fresh water fish. Journal of Wildlife Diseases 8, 225233.CrossRefGoogle Scholar
KOYA, Y., MATSUBARA, T., IKEUCHI, T., ADACHI, S. & YAMAUCHI, K. ( 1997). Annual changes in serum vitellogenin concentrations in viviparous eelpout, Zoarces elongatus. Advances in Comparative Physiology and Biochemistry 118, 12171223.CrossRefGoogle Scholar
LAFFERTY, K. D. & KURIS, A. M. ( 1999). How environment stress affects the impact of parasites. Limnology and Oceanography 44, 925931.CrossRefGoogle Scholar
LAEMMLI, U. K. ( 1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227, 680685.CrossRefGoogle Scholar
LOWRY, O. H., FARR, A. L., ROSEBROUGH, N. J. & RANDALL, R. J. ( 1951). Protein measurement with Folin phenol reagent. The Journal of Biological Chemistry 193, 265275.Google Scholar
MACKENZIE, D., THOMAS, P. & FARRAR, S. M. ( 1989). Seasonal changes in thyroid and reproductive steroid hormones in female channel catfish (Itaclurus punctatus) in pond culture. Aquaculture 78, 6380.CrossRefGoogle Scholar
MARKS, R. E., JUANES, F., HARE, J. A. & CONOVER, D. O. ( 1996). Occurrence and effect of the parasitic isopod, Lironeca ovalis (Isopoda: Cymothoidae), on young-of-the-year bluefish, Pomatomus saltatrix (Pisces: Pomacentridae). Canadian Journal of Fisheries and Aquatic Sciences 53, 20522057.CrossRefGoogle Scholar
MARUYAMA, K., MIKAWA, T. & EBASHI, S. ( 1984). Detection of calcium binding proteins by 45Ca autoradiography on nitrocellulose membrane after sodium dodecyl sulfate gel electrophoresis. Journal of Biochemistry (Tokyo) 95, 511519.CrossRefGoogle Scholar
MENEZES, M. S. ( 1994). Estrutura da população e reprodução de Cyphocarax gilbert (Quoy and Gaimard, 1824) (Osteichthyes, Curimatidae) no trecho inferior do rio Paraíba do Sul (RJ, MG) e principais afluentes. Dissertação de Mestrado (MSc). Universidade Federal do Paraná, Curitiba, PR.
NAGAHAMA, Y. ( 1983). The functional morphology of teleost gonads. In Fish Physiology, vol. IXA, (ed. Hoar, W. S. & Randall, D. J.), pp. 223264. Academic Press, London.CrossRef
RADUJKOVIC, B. M. ( 1991). Parasitic crustaceans of Adriatic fishes. Wiadomosci Parazytologiczne 37, 149150.Google Scholar
RAIBAUT, A. & TRILLES, J. P. ( 1993). The sexuality of parasitic crustaceans. Advances in Parasitology 32, 367444.CrossRefGoogle Scholar
RETAMAL, C. A., THIEBAUT, P. & ALVES, E. W. ( 1999). Protein purification from polyacrylamide gels by sonication extraction. Analytical Biochemistry 268, 1520.CrossRefGoogle Scholar
ROMESTAND, B., JANICOT, M. & TRILLES, J. P. ( 1977). Modifications tissulaires et réactions de défences chez quelques Téléostéens parasites par les Cymothoidea (Crustacés Isopodes hématophages). Annales de Parasitologie Humaine et Comparée 52, 171180.CrossRefGoogle Scholar
SCHAEFER, S. A. ( 1993). A remarkable occurrence of isopod parasitism on an armoured catfish, Microlepidogaster maculipinnis. Journal of Fish Biology 42, 307310.CrossRefGoogle Scholar
SCHNEIDER, W. J. ( 1996). Vitellogenin receptors: oocyte- specific members of the low-density lipoprotein receptor supergene family. International Review of Cytology 166, 103137.CrossRefGoogle Scholar
SILVA-NETO, M. A., ATELLA, G. C., FIALHO, E., PAES, M. C., ZINGALI, R. B., PETRETSKI, J. H., ALVES, E. W. & MASUDA, H. ( 1996). Isolation of a calcium-binding phosphoprotein from the oocytes and hemolymph of the blood-sucking insect Rhodnius prolixus. The Journal of Biological Chemistry 271, 3022730232.CrossRefGoogle Scholar
SZIDAT, L. ( 1948). Riggia paranenis n.g., n. sp. un isópodo parásito de la cavidad del cuerpo de “Curimata platana” Günther del Rio Paraná. Revista del Instituto de Investigación de las Ciencias Naturales Ciencias Zoológicas, Buenos Aires 1, 4546.Google Scholar
TATA, J. R. & SMITH, D. F. ( 1978). Vitellogenesis. A versatile model for hormonal regulation of gene expression. Recent Progress in Hormone Research 35, 4790.Google Scholar
THATCHER, V. E. ( 1991). Amazon fish parasites. Amazoniana 11, 263572.Google Scholar
THOMÉ, M. P. M. ( 1997). Influência do parasita Riggia paranensis (Crustacea: Cymothoidae) no sairú Cyphocarax gilbert (Pisces, Curimatidae) no complexo lagoa de Cima-lagoa Feia. Monografia. Universidade Estadual do Norte Fluminense.
TOFT, C. ( 1991). An ecological perspective: the population and community consequences of parasitism. In Parasite-Host Associations (ed. Toft, C. A., Aeschlimann, A. & Bolis, L.), pp. 319343. Oxford Science Publication, New York, USA.
TRILLES, J. P. ( 1991). Catalogue mondial des Cymothoidae. Studia Marina, Kotor 21/22, 5288.Google Scholar
TYLER, C. R. & LUBBERINK, K. ( 1996). Identification of four ovarian receptor proteins that bind vitellogenin but not other homologous plasma lipoproteins in the rainbow trout, Oncorhynchus mykiss. Journal of Comparative Physiology B 166, 1120.CrossRefGoogle Scholar
UTARABHAND, P. & BUNLIPATANON, P. ( 1996). Plasma vitellogenin of grouper (Epinephelus malabaricus): isolation and properties. Journal of Comparative Biochemistry and Physiology C 115, 101110.CrossRefGoogle Scholar
WALLACE, R. A. & SELMAN, K. ( 1985). Major protein changes during vitellogenesis and maturation of Fundulus oocytes. Developmental Biology 110, 492498.CrossRefGoogle Scholar