Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T19:33:54.990Z Has data issue: false hasContentIssue false

Evasion of the immune response: survival within low responder individuals of the host population

Published online by Cambridge University Press:  23 August 2011

D. Wakelin
Affiliation:
Department of Zoology, University of Nottingham, Nottingham NG7 2RD

Summary

It is proposed that, for many species of parasites, evasion of the host immune response may be achieved passively through enhanced survival within host individuals that have a genetically determined low responsiveness to infection. Evasion by this means may contribute significantly to continued transmission of infection in man and domestic animals and influence the severity of pathology. Low responsiveness plays an important role in determining over-dispersion of parasites within host populations, and the common occurrence of this form of distribution is seen as supporting evidence for the proposition, although few of the examples available provide conclusive proof. The extensive individual and strain variation in response to parasitic infection in laboratory strains of mice is tak as a homologue of the natural situation and allows analysis of the mechanisms underlying low responsiveness. Two examples are considered in detail. In Leishmania infections both non-H-2 and H-2-linked genes influence resistance, but the primary expression of genetically determined low response is at the level of the macrophage. Genetic influences upon acquired immunity regulate macrophage–T-cell interactions. In Trichinella spiralis H-2-linked and non-H-2 genes influence development of the intestinal responses necessary for expulsion of the adult worm, the former through the response of helper T-cells to worm antigen and the amplification of this response through other T-cells, the latter through an effect upon the response of myeloid stem cells to T-cell signals. Modification of genetically determined low responsiveness is discussed in terms of (a) improving host responsiveness through vaccination or non-specific immunostimulation and (b) altering host genotype through selective breeding or the introduction of resistance alleles into a population.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alizadeh, H. & Wakelin, D. (1982). Genetic factors controlling the intestinal mast cell response in mice infected with Trichinella spiralis. Clinical and Experimental Immunology 49, 331–7.Google ScholarPubMed
Anderson, R. M. (1982). Epidemiology of infectious disease agents. In Modern Parasitology (ed. Cox, F. E. G.), pp. 204–51. Oxford: Blackwell Scientific Publishers.Google Scholar
Anderson, R. M. & Gordon, D. M. (1982). Processes influencing the distribution of parasite numbers within host populations with special emphasis on parasite-induced host mortalities. Parasitology 85, 373–98.CrossRefGoogle ScholarPubMed
Anderson, R. M. & May, R. M. (1982). Coevolution of hosts and parasites. Parasitology 85, 411–26.CrossRefGoogle ScholarPubMed
Behnke, J. M. (1975). Aspiculuris tetraptera in wild Mus musculus. The prevalence of infection in male and female mice. Journal of Helminthology 49, 8590.CrossRefGoogle ScholarPubMed
Behnke, J. M. & Wakelin, D. (1973). The survival of Trichuris muris in wild populations of its natural hosts. Parasitology 67, 157–64.CrossRefGoogle ScholarPubMed
Bell, R. G., McGregor, D. D. & Despommier, D. D. (1979). Trichinella spiralis: mediation of the intestinal component of protective immunity in the rat by multiple, phase-specific antiparasitic responses. Experimental Parasitology 47, 140–57.CrossRefGoogle ScholarPubMed
Blackwell, J., Freeman, J. & Bradley, D. (1980). Influence of H-2 complex on acquired resistance to Leishmania donovani infection in mice. Nature, London 283, 72–4.CrossRefGoogle ScholarPubMed
Bodmer, W. F. (1972). Evolutionary significance of the HL-A system. Nature, London 237, 139–45.CrossRefGoogle ScholarPubMed
Bradley, D. J. (1977). Regulation of Leishmania populations within the host. II. Genetic control of acute susceptibility of mice to Leishmania donovani infection. Clinical and Experimental Immunology 30, 130–40.Google ScholarPubMed
Bradley, D. J. (1980). Genetic control of resistance to protozoa infections. In Genetic Control of Natural Resistance to Infection and Malignancy (ed. Skamene, E.Kongshavn, P. A. L. and Landy, M.), pp. 928. New York and London: Academic Press.CrossRefGoogle Scholar
Bradley, D. J. (1982). Models of complex host–parasite relationships: murine leishmaniasis. In Animal Models in Parasitology (ed. Owen, D. G.), pp. 6980. London: Macmillan.CrossRefGoogle Scholar
Bradley, D. J. & Kirkley, J. (1977). Regulation of Leishmania populations within the host. I. The variable course of Leishmania donovani infections in mice. Clinical and Experimental Immunology 30, 119–29.Google ScholarPubMed
Brindley, P. J. & Dobson, C. (1983). Genetic control of liability to infection with Nemato-spiroides dubius in mice: direct and correlated responses to selection of mice for faecal parasite egg count. Parasitology 87, 113–27.CrossRefGoogle ScholarPubMed
Clarke, B. C. (1976). The ecological genetics of hosth-parasite relationships. In Genetic Aspects of Host-Parasite Relationships (ed. Taylor, A. E. R. and Muller, R.), pp. 87103. Oxford: Blackwell.Google Scholar
Dargie, J. D. (1982). The influence of genetic factors on the resistance of ruminants to gastrointestinal nematode and trypanosome infections. In Animal Models in Parasitology (ed. Owen, D. G.), pp. 1751. London: Macmillan.CrossRefGoogle Scholar
Despommieb, D. D., Campbell, W. C. & Blair, L. S. (1977). The in vivo and in vitro analysis of immunity to Trichinella spiralis in mice and rats. Parasitology 74, 109–19.CrossRefGoogle Scholar
De Tolla, L. J., Scott, P. A. & Farrell, J. P. (1981). Single gene control of resistance to cutaneous leishmaniasis in mice. Immurwgenetics 14, 2939.CrossRefGoogle ScholarPubMed
De Tolla, L. J., Semprevivo, L. H., Palczuk, N. C. & Passmore, H. C. (1980). Genetic control of acquired resistance to visceral leishmaniasis in mice. Immunogenetics 10, 353–61.CrossRefGoogle ScholarPubMed
Duncan, W. R., Wakeland, E. K. & Klein, J. (1980). Heterozygosity of H-2 loci in wild mice. Nature, London 281, 603–5.CrossRefGoogle Scholar
Gorczynski, R. M. & MacRae, S. (1982). Analysis of subpopulations of glass-adherent mouse skin cells controlling resistance/susceptibility to infection with Leishmania tropica, and correlation with the development of independent proliferative signals to Lyt-l+/Lyt-2+T lymphocytes. Cellular Immunology 67, 7489.CrossRefGoogle Scholar
Grencis, R. K. (1982). Immunity to Trichinella spiralis. Ph.D. thesis, University of Glasgow.Google Scholar
Grencis, R. K. & Wakelin, D. (1983). Immunity to Trichinella spiralis in mice. Factors involved in direct anti-worm effects. Proceedings of the International Commission for Trichinellosis (in the Press).Google Scholar
Grove, D. I., Mahmoud, A. A.F. & Warren, K. S. (1977). Eosinophils and resistance to Trichinella spiralis. Journal of Experimental Medicine 145, 755–9.CrossRefGoogle ScholarPubMed
Handman, E., Cereding, R. & Mitchell, G. F. (1979). Murine cutaneous leishmaniasis: disease patterns in intact and nude mice of various genotypes and examination of some differences between normal and infected macrophages. Australian Journal of Experimental Biology and Medical Science 57, 929.CrossRefGoogle ScholarPubMed
Howard, J. G., Hale, C. & Chan-Liew, W. L. (1980). Immunological regulation of experimental cutaneous leishmaniasis. I. Immunogenetic aspects of susceptibility to Leishmania tropica in mice. Parasite Immunology 2, 303–14.CrossRefGoogle ScholarPubMed
Howard, J. G., Hale, C. & Liew, F. Y. (1980). Genetically-determined susceptibility to Leishmania tropica infection is expressed by haemopoietic donor cells in mouse radiation chimaeras. Nature, London 288, 161–2.CrossRefGoogle Scholar
Howard, J. G., Hale, C. & Liew, F. Y. (1981). Immunological regulation of experimental cutaneous leishmaniasis. IV. Prophylactic effect of sublethal irradiation as a result of abrogation of suppressor T cell generation in mice genetically susceptible to Leishmania tropica. Journal of Experimental Medicine 153, 557–68CrossRefGoogle ScholarPubMed
Howard, J. G., Nicklin, S., Hale, C. & Liew, F. Y. (1982). Prophylactic immunization against experimental leishmaniasis. I. Protection induced in mice genetically vulnerable to fatal Leishmania tropica infection. Journal of Immunology 129, 2206–12.CrossRefGoogle ScholarPubMed
Jacqueline, E., Vernes, A., Bout, D. & Biguet, J. (1978). Trichinella spiralis: facteurs immunitaires inhibiteurs de la production de larves. II. Premier analyse in vitro des facteurs humoraux et sécrétaires actifs chez les souris, le rat, et la minipore infestés ou immunisés. Experimental Parasitology 45, 4254.CrossRefGoogle Scholar
Kim, C. W. (1974). Trichinellosis. New York: Intext Education Publishers.Google Scholar
Kim, C. W., Ruitenberg, E. J. & Teppema, J. S. (1981). Trichinellosis. Chertsey, England: Reedbooks Ltd.Google Scholar
Krco, C. J., David, C. S. & Wassom, D. L. (1982). Characterization of an in vitro proliferation response to solubilized Trichinella spiralis antigens: role of la antigens and Ly-1+ T cells. Cellular Immunology 68, 359–67.CrossRefGoogle Scholar
Krco, C. J., Wassom, D. L., Abramson, E. J. & David, C. S. (1983). MHC restricted T-cell clones specific for a parasite antigen: Trichinella spiralis. Immunogenetics 18, 435–44.CrossRefGoogle Scholar
Louis, J. A., Zubler, R. H., Coutinho, S. G., Lima, G., Behin, R., Mauel, J. & Engers, H. D. (1982). The in vitro generation and functional analysis of murine T cell populations and clones specific for a protozoan parasite Leishmania tropica. Immunological Reviews 61, 215–43.CrossRefGoogle ScholarPubMed
Mauel, J. & Behin, R. (1982). Leishmaniasis: immunity, immunopathology and immunodiagnosis. In Immunology of Parasitic'Infections (ed. Cohen, S. and Warren, K. S.), pp. 299355. Oxford: Blackwell Scientific Publications.Google Scholar
Mitchell, G. F. & Handman, E. (1983). Leishmania tropica major in mice: vaccination against cutaneous leishmaniasis in mice of high genetic susceptibility. Australian Journal of Experimental Biology and Medical Science 61, 1125.CrossRefGoogle ScholarPubMed
Mitchell, G. F., Curtis, J. M. & Handman, E. (1981). Resistance to cutaneous leishmaniasis in genetically susceptible BALB/c mice. Australian Journal of Experimental Biology and Medical Science 59, 555–65.CrossRefGoogle ScholarPubMed
Mitchell, G. F., Anders, R. F., Brown, G. V., Handman, E., Roberts-Thompson, I. C., Chapman, C. B., Forsyth, K. P., Kahl, L. P. & Cruise, K. M. (1982). Analysis of infection characteristics and antiparasite immune responses in resistant compared with susceptible hosts. Immunological Reviews 61, 137–88.CrossRefGoogle ScholarPubMed
Rajasekariah, G. R., Mitchell, G. F. & Rickard, M. D. (1980). Taenia taeniaeformis in mice: protective immunization with oncospheres and their products. International Journal for Parasitology 10, 155–60.CrossRefGoogle ScholarPubMed
Rosenstreich, D. L., Weinblatt, A. C. & O'Brien, A. D. (1982). Genetic control of resistance to infection in mice. CRC Critical Reviews in Immunology 3, 263330.Google ScholarPubMed
Sher, A. (1983). Clonal variation in parasite antigenicity and virulence. In Progress in Immunology, v (ed. Yamamura, Y. and Tada, T.). New York and London: Academic Press (in the Press).Google Scholar
Sher, A. & Scott, P. A. (1982). Genetic factors influencing the interaction of parasites. Clinics in Immunology and Allergy 2, 489510.CrossRefGoogle Scholar
Skamene, E., Gros, P., Forget, A., Kongshavn, P. A. L., St Charles, C. & Taylor, B. A. (1982). Genetic regulation of resistance to intracellular pathogens. Nature, London 297, 506–9.CrossRefGoogle ScholarPubMed
Snell, G. D. (1968). The H-2 locus of the mouse: observations and speculations concerning its comparative genetics and its polymorphism. Folia Biologica, Praha 14, 335–46.Google ScholarPubMed
Stauber, L. A., McConnell, E. & Hooostraal, H. (1966). Leishmaniasis in the Sudan Republic. 25. Experimental visceral leishmaniasis in the Nile grass rat, Arvicanthus niloticus niloticus Dollman. Experimental Parasitology 18, 3540.CrossRefGoogle Scholar
Urquhart, G. M. (1980). Application of immunity in the control of parasitic disease. Veterinary Parasitology 6, 217–39.CrossRefGoogle Scholar
Wakelin, D. (1975). Genetic control of immune responses to parasites: selection for responsiveness and non-responsiveness to Trichuris muris in random-bred mice. Parasitology 71, 377–84.CrossRefGoogle ScholarPubMed
Wakelin, D. (1978). Genetic control of susceptibility and resistance to parasitic infection. Advances in Parasitology 16, 219308.CrossRefGoogle ScholarPubMed
Wakelin, D. (1980). Genetic control of immunity to parasites. Infection with Trichinella spiralis in inbred and congenic mice showing rapid and slow responses to infection. Parasite Immunology 2, 8598.CrossRefGoogle Scholar
Wakelin, D. & Denham, D. A. (1983). The Immune Response. In Trichinella and Trichinosis (ed. Campbell, W. C.), pp. 265308. New York: Plenum Press.CrossRefGoogle Scholar
Wakelin, D. & Donachie, A. M. (1981). Genetic control of immunity to Trichinella spiralis. Donor bone marrow cells determine responses to infection in mouse radiation chimaeras. Immunology 43, 787–92.Google ScholarPubMed
Wakelin, D. & Donachie, A. M. (1983). Genetic control of immunity to Trichinella spiralis: influence of H-2-linked genes on immunity to the intestinal phase of infection. Immunology 48, 343–50.Google Scholar
Wassom, D. L., De Witt, C. W. & Grundmann, A. W. (1974). Immunity to Hymenolepis citelli by Peromyscus maniculatus: genetic control and ecological implications. Journal of Parasitology 60, 4752.CrossRefGoogle ScholarPubMed
Wassom, D. L., Guss, V. M. & Grundmann, A. W. (1973). Host resistance in a natural host–parasite system. Resistance to Hymenolepis citelli by Peromyscus maniculatus. Journal of Parasitology 59, 117–21.CrossRefGoogle Scholar
Wassom, D. L., Wakelin, D., Brooks, B. O., Krco, C. J. & David, C. S. (1984). Genetic control of immunity to Trichinella spiralis infections of mice. Hypothesis to explain the role of H-2 genes in primary and challenge infections. Immunology 51, 625–31.Google ScholarPubMed
Wassom, D. L., Brooks, B. O., Babisch, J. G. & David, C. S. (1983). A gene mapping between the S and D regions of the H-2 complex influences resistance to Trichinella spiralis infections of mice. Journal of Immunogenetics 101, 371–8.CrossRefGoogle Scholar
Weintraub, J. & Weinbaum, F. I. (1977). The effect of BCG on experimental cutaneous leishmaniasis in mice. Journal of Immunology 118, 2288–90.CrossRefGoogle ScholarPubMed
Willmott, S. (1983). Symposium on the Macrophage. Transactions of the Royal Society of Tropical Medicine and Hygiene 77, 597655.Google Scholar