Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-15T14:17:56.506Z Has data issue: false hasContentIssue false

Flow cytometry analysis of the circulating haemocytes from Biomphalaria glabrata and Biomphalaria tenagophila following Schistosoma mansoni infection

Published online by Cambridge University Press:  07 January 2009

R. L. MARTINS-SOUZA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte – MG. Brasil
C. A. J. PEREIRA
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte – MG. Brasil
P. M. Z. COELHO
Affiliation:
Centro de Pesquisas René Rachou (CPRR-Fiocruz), Belo Horizonte, Minas Gerais, Brasil
O. A. MARTINS-FILHO
Affiliation:
Centro de Pesquisas René Rachou (CPRR-Fiocruz), Belo Horizonte, Minas Gerais, Brasil
D. NEGRÃO-CORRÊA*
Affiliation:
Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte – MG. Brasil
*
*Corresponding author: Departamento de Parasitologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Av. Presidente Antônio Carlos 6627, Campus Pampulha, 31270-901, Belo Horizonte, MG, Brasil. Tel: +55 31 3409 2855. Fax: +55 31 3409 2970. E-mail: denegrao@icb.ufmg.br

Summary

Aiming to further characterize the haemocyte subsets in Biomphalaria snails, we have performed a detailed flow cytometric analysis of whole haemolymph cellular components using a multiparametric dual colour labelling procedure. Ethidium bromide/acridine orange fluorescence features were used to first select viable haemocytes followed by flow cytometric morphometric analysis based on the laser scatter properties (forward scatter-FSC and side scatter-SSC). Our findings demonstrated that B. glabrata (BG-BH, highly susceptible to S. mansoni) and 2 strains of B. tenagophila (BT-CF, moderately susceptible and BT-Taim, resistant to S. mansoni) have 3 major circulating haemocyte subsets, referred to as small, medium and large haemocytes. The frequency of small haemocytes was higher in BG-BH, while medium haemocytes were the most abundant cell-type in both B. tenagophila strains. Schistosoma mansoni infection resulted in early reduction of large and medium circulating haemocytes followed by an increase of small haemocytes. Although parasite infection induced haemocyte alterations in all Biomphalaria strains, the response was particularly intense in BT-Taim, the parasite-resistant snail. Interestingly, the trematode infection induces changes in haemocytes with less granular rather than in those with more granular profile. The results indicated that, in B. tenagophila of Taim strain, circulating haemocytes, especially the medium and high subset with less granular profile, are very reactive cells upon S. mansoni infection, suggesting that this cell subset would participate in the early parasite destruction observed in this snail strain.

Type
Research Article
Copyright
Copyright © 2009 Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adema, C. M., Van Deutekom-Mulder, E. C., Van Der Knaap, W. P. W. and Sminia, T. (1994). Schistosomicidal activities of Lymnaea stagnalis haemocytes, role of oxygen radicals. Parasitology 109, 479485.CrossRefGoogle ScholarPubMed
Barraco, M. A., Steil, A. A. and Gargioni, R. (1993). Morphological characterization of the hemocytes of the pulmonate snail Biomphalaria tenagophila. Memórias do Instituto Oswaldo Cruz 88, 7383.CrossRefGoogle Scholar
Bayne, C. J., Buckley, P. M. and Dewan, P. C. (1980). Macrophage-like hemocytes of resistant Biomphalaria glabrata are cytotoxic for sporocysts of Schistosoma mansoni in vitro. Journal of Parasitology 66, 413419.CrossRefGoogle Scholar
Bayne, C. J. (1990). Phagocytosis and non-self recognition in invertebrates. BioScience 40, 723731.CrossRefGoogle Scholar
Bezerra, F. S. M., Nogueira-Machado, J. A., Chaves, M. M., Martins, R. L. and Coelho, P. M. Z. (1997). Quantification of the number and phagocytary activity of hemocytes of resistant and susceptible strains of Biomphalaria glabrata and Biomphalaria tenagophila infected with Schistosoma mansoni. Revista do Instituto de Medicina Tropical de São Paulo 39, 197201.CrossRefGoogle ScholarPubMed
Chernin, E. (1970). Behavioral reponses of miracidia of Schistosoma mansoni and other trematodes to substances emitted by snails. Journal of Parasitolology 56, 287296.CrossRefGoogle Scholar
Coelho, P. M., Carvalho, O. S., Andrade, Z. A., Martins-Sousa, R. L., Rosa, F. M., Barbosa, L., Pereira, C. A., Caldeira, R. L., Jannotti-Passos, L. K., Godard, A. L., Moreira, L. A., Oliveira, G. C., Franco, G. R., Teles, H. M. and Negrao-Correa, D. (2004). Biomphalaria tenagophila/Schistosoma mansoni interaction, premises for a new approach to biological control of schistosomiasis. Memórias do Instituto Oswaldo Cruz 99, 109111.CrossRefGoogle ScholarPubMed
Corrêa, M. C. R., Coelho, P. M. Z. and Freitas, J. R. (1979). Susceptibilidae de linhagens de Biomphalaria tenagophila e Biomphalaria glabrata a duas cepas de Schistosoma mansoni – (LE – Belo Horizonte – MG e SJ – São José dos Campos – SP). Revista do Instituto de Medicina Tropical de São Paulo 21, 7276.Google Scholar
Fryer, S. E., Hull, C. J. and Bayne, C. J. (1989). Phagocytosis of yeast by Biomphalaria glabrata: carbohydrate specificity of hemocyte receptors and a plasma opsonin. Developmental Comparative Immunology 13, 916.CrossRefGoogle Scholar
Granath, W. O. Jr. and Yoshino, T. P. (1983). Characterization of molluscan phagocyte subpopulations based on lysosomal enzyme markers. The Journal of Experimental Zoology 226, 205210.CrossRefGoogle Scholar
Hahn, U. K., Bender, R. C. and Bayne, C. J. (2000). Production of reactive oxygen species by hemocytes of Biomphalaria glabrata: carbohydrate-specific stimulation. Developmental Comparative Immunology 24, 531541.CrossRefGoogle ScholarPubMed
Harris, K. R. (1975). The fine structure of encapsulation in Biomphalaria glabrata. Annals of the New York Academy of Sciences 266, 446464.CrossRefGoogle ScholarPubMed
Johnston, L. A. and Yoshino, T. P. (2001). Larval Schistosoma mansoni excretory-secretory glycoproteins (ESPs) bind to hemocytes of Biomphalaria glabrata (Gastropoda) via surface carbohydrate binding receptors. Journal of Parasitology 87, 786793.Google ScholarPubMed
Lie, K. J., Jeong, K. H. and Heyneman, D. (1987). Molluscan host reactions to helminthic infection. In Protozoa, Arthropods and Invertebrates (ed. Soulsby, E. J. L.), pp. 211270. CRC-Press INC, Boca Raton, Florida, USA.Google Scholar
Loker, E. S. and Bayne, C. J. (2001). Molecular studies of the molluscan response to digenean infection. Advances in Experimental Medicine and Biology 484, 209222.CrossRefGoogle ScholarPubMed
Lo Verde, P. T., Gherson, J. and Richards, C. S. (1982). Amebocytic accumulations in Biomphalaria glabrata, fine structure. Developmental and Comparative Immunology 31, 999.Google Scholar
Martins-Souza, R. L., Pereira, C. A., Coelho, P. M. Z. and Negrão-Corrêa, D. (2003). Silica treatment increases the susceptibility of the Cabo Frio strain of Biomphalaria tenagophila to Schistosoma mansoni infection but does not alter the natural resistance of the Taim strain. Parasitology Research 91, 500507.Google Scholar
Martins-Souza, R. L., Pereira, C. A., Martins Filho, O. A., Coelho, P. M. Z., Corrêa, A. Jr. and Negrão-Corrêa, D. (2006). Differential lectin labelling of circulating hemocytes from Biomphalaria glabrata and Biomphalaria tenagophila resistant or susceptible to Schistosoma mansoni infection. Memórias do Instituto Oswaldo Cruz 101, 185192.CrossRefGoogle ScholarPubMed
Matricon-Gondran, M. and Letorcart, M. (1999). Internal defenses of the snail Biomphalaria glabrata – I. Characterization of hemocytes and fixed phagocytes. Journal of Invertebrate Pathology 74, 224234.CrossRefGoogle Scholar
Negrão-Corrêa, D., Pereira, C. A. J., Rosa, F. M., Martins-Souza, R. L., Andrade, Z. A., Coelho, P. M. Z. (2007). Molluscan response to parasite, Biomphalaria and Schistosoma mansoni interaction. Invertebrate Survival Journal 4, 101111.Google Scholar
Noda, S. and Loker, E. S. (1989 a). Effects of infection with Echinostoma paraensei on the circulating haemocyte population of the host snail Biomphalaria glabrata. Parasitology 98, 3541.CrossRefGoogle ScholarPubMed
Noda, S. and Loker, E. S. (1989 b). Phagocytic activity of hemocytes of M-line Biomphalaria glabrata snails, effect of exposure to the trematode Echinostoma paraensei. Journal Parasitology 75, 261269.CrossRefGoogle Scholar
Ottaviani, E. (1992). Immunorecognition in the gastropod molluscs with particular reference to the freshwater snail Planorbius corneus (L.) (Gastropoda, Pulmonata). Bollettino di Zoologia 59, 129139.CrossRefGoogle Scholar
Paraense, W. L. and Corrêa, L. R. (1963). Variation in susceptibility of populations of Australorbis glabratus to a strain of Schistosoma mansoni. Revista do Instituto de Medicina Tropical de São Paulo 5, 1522.Google ScholarPubMed
Paraense, W. L. (2001). The schistosome vectors in the Americas. Memórias do Instituto Oswaldo Cruz 96, 716.CrossRefGoogle ScholarPubMed
Parks, D. R., Bryan, V. M., Oi, V. T. and Herzenberg, L. (1979). A. Antigen specific identification and cloning of hybridomas with a Fluorescence Activated Cell Sorter (FACS). Proceedings of the National Academy of Sciences, USA 76, 1962–.1966CrossRefGoogle Scholar
Pellegrino, J. and Katz, N. (1968). Experimental chemotherapy of schistosomiasis mansoni. Advances in Parasitology 6, 233290.CrossRefGoogle ScholarPubMed
Pellegrino, J. and Macedo, D. G. (1955). A simplified method for concentration of cercaria. Journal of Parasitology 41, 306309.CrossRefGoogle Scholar
Rosa, F. M., Godard, A. L., Azevedo, V. and Coelho, P. M. (2005). Biomphalaria tenagophila, dominant character of the resistance to Schistosoma mansoni in descendants of crossbreedings between resistant (Taim, RS) and susceptible (Joinville, SC) strains. Memórias do Instituto Oswaldo Cruz 100,1923.CrossRefGoogle ScholarPubMed
Santos, M. B. L., Freitas, J. R., Correia, M. C. R. and Coelho, P. M. Z. (1979). Suscetibilidade ao Schistosoma mansoni de híbridos de Biomphalaria tenagophila do Taim, RGS, Cabo Frio, RJ, e Belo Horizonte. Revista do Instituto de Medicina Tropical de São Paulo 21, 281286.Google Scholar
Sapp, K. K. and Loker, E. S. (2000). A compartive study of mechanisms underlying digenean-snail specificity. In vitro interactions between hemocytes and digenean larvae. Journal of Parasitology 86, 10201029.Google Scholar
Souza, C. P., Borges, C. C., Santana, A. G. and Andrade, Z. A. (1997). Comparative histology of Biomphalaria glabrata, B. tenagophila and B. straminea with variable degrees of resistance to Schistosoma mansoni miracidia. Memórias do Instituto Oswaldo Cruz 92, 517522.CrossRefGoogle Scholar
Sminia, T. (1981). Invertebrate Blood Cell. Academic Press, New York.Google Scholar
Van Der Knaap, W. P. W. and Loker, E. S. (1990). Immune mechanisms in trematode-snail interactions. Parasitology Today 6, 175182.CrossRefGoogle ScholarPubMed
Yoshino, T. P., Boyle, J. P. and Humphries, J. E. (2001). Receptor-ligand interactions and cellular signalling at the host-parasite interface. Parasitology 123 (Suppl.), S143S157.CrossRefGoogle ScholarPubMed
Zelck, U. and Becker, W. (1992). Biomphalaria glabrata, influence of calcium, lectins and plasma factors on in vitro phagocytic behavior of hemocytes of non-infected or Schistosoma mansoni infected snails. Experimental Parasitology 75, 126136.CrossRefGoogle ScholarPubMed