Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T11:59:59.442Z Has data issue: false hasContentIssue false

Host-related DNA sequences are localized in the body of schistosome adults

Published online by Cambridge University Press:  06 April 2009

Y. Irie
Affiliation:
Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki-ken 305, Japan
Y. Iwamura
Affiliation:
Institute of Basic Medical Sciences, University of Tsukuba, Tsukuba-shi, Ibaraki-ken 305, Japan

Summary

The localization of host (mouse)-related DNA sequences in the adults and cercariae of Schistosoma japonicum and S. mansoni was examined by in situ hybridization using 32P-labelled probes. The hybridization signals to the sequences of the mouse type C and type A retroviruses were clearly observed in the subtegumental layer and inner tissues of S. japonicum adults. In contrast, it was hard to find any signals to these sequences in S. mansoni adults. Distinct signals to the env-specific region of the mouse ecotropic type C retrovirus were observed in the subtegumental layer and inner tissues of S. mansoni adults. No signal to the sequence of the mouse type B retrovirus was found on the sections of either schistosome adult. The signals to the sequence of the genomic clone SmM51 derived from male S. mansoni were found in the tissues of both the schistosome adults. The signals to the sequences of the mouse type A and env-specific region of ecotropic type C retroviruses were not seen in the cercariae of each species, whereas the signals to the sequence of SmM51 were detected in S. mansoni cercariae. These observations suggest that host-related DNA sequences might be incorporated unequally into the schistosome genome during development in the final host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bacheler, L. T. & Fan, H. (1980). Integrated Moloney murine leukemia virus DNA studied by using complementary DNA which does not recognize endogenous related sequences. Journal of Virology 33, 1074–82.CrossRefGoogle Scholar
Buetti, E. & Diggelmann, H. (1981). Cloned mouse mammary tumour virus DNA is biologically active in transfected mouse cells and its expression is stimulated by glucocorticoid hormones. Cell 23, 335–45.Google Scholar
Capron, A., Biguet, J., Rose, F. & Vernes, A. (1965). Les antigènes de Schistosoma mansoni. II. Étude immunoélectrophoréetique comparée de divers stades larvaires et des adultes des deux sexes. Aspects immunologiques des relations hôte-parasite de la cercaire et de l'adulte de S. mansoni. Annals de L'Institut Pasteur 109, 798810.Google Scholar
Capron, A., Biguet, J., Vernes, A. & Afchain, D. (1968). Structure antigénique des helminthes. Aspects immunologiques des relations hôte-parasite. Pathologie et Biologie 16, 121–38.Google Scholar
Capron, A., Dessaint, J. P., Camus, D. & Capron, M. (1976). Some immune mechanisms in host-parasite relationship. In Biochemistry of Parasites and Host—Parasite Relationships (ed. Van den Bossche, H.), pp. 263–82. Amsterdam: North-Holland Publishing Company.Google Scholar
Chan, H. W., Bryan, T., Moore, J. L., Staal, S. P., Rowe, W. P. & Martin, M. A. (1980). Identification of ecotropic proviral sequences in inbred mouse strains with a cloned subgenomic DNA fragment. Proceedings of the National Academy of Sciences, USA 77, 5779–83.Google Scholar
Clegg, J. A. (1972). The schistosome surface in relation to parasitism. In Functional Aspects of Parasite Surfaces, Symposia of the British Society for Parasitology 10, pp. 2340. Oxford: Blackwell Scientific Publications.Google Scholar
Clegg, J. A. (1974). Host antigens and the immune response in schistosomiasis. In Parasites in the Immunized Host: Mechanisms of Survival, Ciba Foundation Symposium 25, pp. 161–76. Amsterdam: Elsevier Scientific Publishing Company.Google Scholar
Clegg, J. A., Smithers, S. R. & Terry, R. J. (1970). ‘ Host’ antigens associated with schistosomes: observations on their attachment and their nature. Parasitology 61, 8794.Google Scholar
Clegg, J. A., Smithers, S. R. & Terry, R. J. (1971 a). Acquisition of human antigens by Schistosoma mansoni during cultivation in vitro. Nature, London 232, 653–4.CrossRefGoogle ScholarPubMed
Clegg, J. A., Smithers, S. R. & Terry, R. J. (1971 b). Concomitant immunity and host antigens associated with schistosomiasis. International Journal for Parasitology 1, 43–9.CrossRefGoogle ScholarPubMed
Coelho, P. M. Z., Gazzinelli, G. & Pellegrino, J. (1980). Schistosoma mansoni: host antigen occurrence on worms recovered from laboratory vertebrate animals. Parasitology 81, 349–54.CrossRefGoogle ScholarPubMed
Cole, M. D., Ono, M. & Huang, R. C. C. (1981). Terminally redundant sequences in cellular intracisternal A-particle genes. Journal of Virology 38, 680–7.Google Scholar
Damian, R. T. (1964). Molecular mimicry: antigen sharing by parasite and host and its consequences. American Naturalist 98, 129–49.CrossRefGoogle Scholar
Damian, R. T. (1967). Common antigens between adult Schistosoma mansoni and the laboratory mouse. Journal of Parasitology 53, 60–4.CrossRefGoogle ScholarPubMed
Damian, R. T. (1979). Molecular mimicry in biological adaptation. In Host—Parasite Interfaces (ed. Nickol, B. B.), pp. 103–26. New York: Academic Press.Google Scholar
Damian, R. T. (1987). Molecular mimicry revisited. Parasitology Today 3, 263–6Google Scholar
Damian, R. T., Greene, N. D. & Hubbard, W. J. (1973). Occurrence of mouse α2-macroglobulin antigenic determinants on Schistosoma mansoni adults, with evidence on their nature. Journal of Parasitology 59, 6473.CrossRefGoogle Scholar
Dean, D. A. (1974). Schistosoma mansoni: adsorption of human blood group A and B antigens by schistosomula. Journal of Parasitology 60, 260–3.Google Scholar
Dean, D. A. & Sell, K. W. (1972). Surface antigens on Schistosoma mansoni. II. Absorption of a Forssman-like host antigen by schistosomula. Clinical and Experimental Immunology 12, 525–40.Google Scholar
Dineen, J. K. (1963). Immunological aspects of parasitism. Nature, London 197, 268–9.CrossRefGoogle ScholarPubMed
Dissous, C. & Capron, A. (1989). Schistosotna mansoni and its intermediate hostBiomphalaria glabrata express a common 39 kilodalton acidic protein. Molecular and Biochemical Parasitology 32, 4956.CrossRefGoogle ScholarPubMed
Dissous, C., Grzych, J. M. & Capron, A. (1986). Schistosoma mansoni shares a protective oligosaccharide epitope with freshwater and marine snails. Nature, London 323, 443–5.Google Scholar
Gitter, B. D. & Damian, R. T. (1982). Murine alloantigen acquisition by schistosomula of Schistosoma mansoni: further evidence for the presence of K, D, and I region gene products on the tegumental surface. Parasite Immunology 4, 383–93.Google Scholar
Gitter, B. D., McCormick, S. L. & Damian, R. T. (1982). Murine alloantigen acquisition by Schistosoma mansoni: presence of H-2K determinants on adult worms and failure of allogeneic lymphocytes to recognize acquired MHC gene products on schistosomula. Journal of Parasitology 68, 513–18.Google Scholar
Goff, L. Y. & Coleman, A. W. (1984). Transfer of nuclei from a parasite to its host. Proceedings of the National Academy of Sciences, USA 81, 5420–4.Google Scholar
Goldring, O. L., Clegg, J. A., Smithers, S. R. & Terry, R. J. (1976). Acquisition of human blood group antigens by Schistosoma mansoni. Clinical and Experimental Immunology 26, 181–7.Google ScholarPubMed
Hayashi, S., Gillam, I. C, Delaney, A. D. & Tener, G. M. (1978). Acetylation of chromosome squashes of Drosophila melanogaster decreases the background in autoradiographs from hybridization with [125I]-labeled RNA. Journal of Histochemistry and Cytochemistry 26, 677–9.CrossRefGoogle ScholarPubMed
Howell, M. J. (1985). Gene exchange between hosts and parasites. International Journal for Parasitology 15, 597600.Google Scholar
Iwamura, Y., Irie, Y., Kominami, R., Nara, T. & yasuraoka, K. (1991). Existence of host-related DNA sequences in the schistosome genome. Parasitology 102, 397403.CrossRefGoogle ScholarPubMed
Iwamura, Y. & Irie, Y. (1992). Heterogeneity of host-related DNA sequences in schistosomes. Parasitology Today 8, 90.Google Scholar
Jaenisch, R., Fan, H. & Croker, B. (1975). Infection of preimplantation mouse embryos and of newborn mice with leukemia virus: tissue distribution of viral DNA and RNA and leukaemogenesis in the adult animal. Proceedings of the National Academy of Sciences, USA 72, 4008–12.CrossRefGoogle Scholar
Kemp, W. M., Damian, R. T. & Greene, N. D. (1976 a). Immunocytochemical localization of IgG on adult Schistosoma mansoni tegumental surfaces. Journal of Parasitology 62, 830–2.Google Scholar
Kemp, W. M., Merritt, S. C. & Rosier, J. G. (1978). Schistosoma mansoni: identification of immunoglobulins associated with the tegument of adult parasites from mice. Experimental Parasitology 45, 81–7.Google Scholar
Kemp, W. M., Damian, R. T., Greene, N. D. & Lushbaugh, W. B. (1976 b). Immunocytochemical localization of mouse alpha 2-macroglobulin-like antigenic determinants on Schistosoma mansoni adults. Journal of Parasitology 62, 413–19.CrossRefGoogle Scholar
Kemp, W. M., Merritt, S. C, Bogucki, M. S., Rosier, J. G. & Seed, J. R. (1977). Evidence for adsorption of heterospecific host immunoglobulin on the tegument of Schistosoma mansoni. Journal of Immunology 119, 1849–54.CrossRefGoogle ScholarPubMed
Kemp, W. M., Brown, P. R., Merritt, S. C. & Miller, R. E. (1980). Tegument-associated antigen modulation by adult male Schistosoma mansoni. Journal of Immunology 124, 806–11.CrossRefGoogle ScholarPubMed
Khan, A. S., Rowe, W. P. & Martin, M. A. (1982). Cloning of endogenous murine leukemia virus-related sequences from chromosomal DNA of BALB/c and AKR/J mice: identification of an env progenitor of AKR"_"247 mink cell focus-forming proviral DNA. Journal of Virology 44, 625–36.Google Scholar
Ko, A. I., Dräger, U. C. & Harn, D. A. (1990). A Schistosoma mansoni epitope recognized by a protective monoclonal antibody is identical to the stage-specific embryonic antigen 1. Proceedings of the National Academy of Sciences, USA 87, 4159–63.CrossRefGoogle Scholar
Lewin, R. (1985). Fish to bacterium gene transfer. Science 227, 1020.Google Scholar
Lueders, K. K. & Kuff, E. L. (1977). Sequences associated with intracisternal A particles are reiterated in the mouse genome. Cell 12, 963–72.Google Scholar
Lueders, K. K. & Kuff, E. L. (1979). Genetic individuality of intracisternal A-particles of Mus musculus. Journal of Virology 30, 225–31.Google Scholar
Marx, J. (1991). A ‘mitey’ theory for gene jumping. Science 253, 1092–3.Google Scholar
Mclaren, D. J., Clegg, J. A. & Smithers, S. R. (1975). Acquisition of host antigens by young Schistosoma mansoni in mice: correlation with failure to bind antibody in vitro. Parasitology 70, 6775.Google Scholar
Nara, T., Iwamura, Y., Tanaka, M., Irie, Y. & Yasuraoka, K. (1990). Dynamic changes of DNA sequences in Schistosoma mansoni in their course of development. Parasitology 100, 241–5.Google Scholar
Nyame, K., Cummings, R. D. & Damian, R. T. (1987).Schistosoma mansoni synthesizes glycoproteins containing terminal O-linked N-acetylglucosamine residues. Journal of Biological Chemistry 262, 7990–5.Google Scholar
Ono, M., Cole, M. D., White, A. T. & Huang, R. C. C. (1980). Sequence organization of cloned intracisternal A particle genes. Cell 21, 465–73.Google Scholar
Ringold, G. M., Yamamoto, K. R., Shank, P. R. & Varmus, H. E. (1977). Mouse mammary tumor virus DNA in infected rat cells: characterization of unintegrated forms. Cell 10, 1926.CrossRefGoogle ScholarPubMed
Ringold, G. M., Shank, P. R., Varmus, H. E., Ring, J. & Yamamoto, K. R. (1979). Integration and transcription of mouse mammary tumor virus DNA in rat hepatoma cells. Proceedings of the National Academy of Sciences, USA 76, 665–9.CrossRefGoogle ScholarPubMed
Sell, K. W. & Dean, D. A. (1972). Surface antigens on Schistosoma mansoni. I. Demonstration of host antigens on schistosomula and adult worms using the mixed antiglobulin test. Clinical and Experimental Immunology 12, 315–24.Google Scholar
Sher, A., Hall, B. F. & Vadas, M. A. (1978). Acquisition of murine major histocompatibility complex gene products by schistosomula of Schistosoma mansoni. Journal of Experimental Medicine 148, 4657.Google Scholar
Simpson, A. J. G., Singer, D., Mccutchan, T. F., Sacks, D. L. & Sher, A. (1983). Evidence that schistosome MHC antigens are not synthesized by the parasite but are acquired from the host as intact glycoproteins. Journal of Immunology 131, 962–5.Google Scholar
Smith, H. V. & Kusel, J. R. (1979). The acquisition of antigens in the intercellular substance of mouse skin by schistosomula of Schistosoma mansoni. Clinical and Experimental Immunology 36, 430–5.Google ScholarPubMed
Smithers, S. R. & Terry, R. J. (1965). The infection of laboratory hosts with cercariae of Schistosoma mansoni and the recovery of the adult worms. Parasitology 55, 695–700.Google Scholar
Smithers, S. R. & Terry, R. J. (1969). Immunity in schistosomiasis. Annals of the New York Academy of Sciences 160, 826–40.Google Scholar
Smithers, S. R. & Terry, R. J. (1976). The immunology of schistosomiasis. Advances in Parasitology 14, 399422.Google Scholar
Smithers, S. R., Terry, R. J. & Hockley, D. J. (1968). Do adult schistosomes masquerade as their host ? Transactions of the Royal Society of Tropical Medicine and Hygiene 62, 466–7.Google Scholar
Smithers, S. R., Terry, R. J. & Hockley, D. J. (1969). Host antigens in schistosomiasis. Proceedings of the Royal Society of London, B171, 483–94.Google Scholar
Smyth, J. D. (1973). Some interface phenomena in parasitic protozoa and platyhelminths. Canadian Journal of Zoology 51, 367–77.Google Scholar
Sogandares-bernal, F. (1976). Immunoglobulins attached to and in the integument of adult Schistosoma mansoni Sambon 1907, from first infection of CF1 mice. Journal of Parasitology 62, 222–6.Google Scholar
Sprent, J. F. A. (1962). Parasitism, immunity and evolution. In Evolution of Living Organisms (ed. Leeper, G. W.), pp. 149–65. Melbourne: Melbourne University Press.Google Scholar
Tanaka, M., Iwamura, Y., Amanuma, H., Irie, Y., Watanabe, M., Watanbe, T., Uchiyama, Y. & Yasuraoka, K. (1989). Integration and expression of murine retrovirus-related sequences in schistosomes. Parasitology 99, 31–8.Google Scholar
Torspier, G., Capron, A. & Ouaissi, M. A. (1979). Receptor for IgG (Fc) and human β2-microglobulin on S. mansoni schistosomula. Nature, London 278, 447–9.CrossRefGoogle Scholar
Wong-staal, F., Reiz, M. S. Jr, Trainor, C. D. & Gallo, R. C. (1975). Murine intracisternal type A particles: a biochemical characterization. Journal of Virology 16, 887–96.CrossRefGoogle ScholarPubMed