Published online by Cambridge University Press: 06 April 2009
Several species of malarial protozoans commonly parasitize the same host population and often the same individual host. This paper reviews the evidence for interactions among such host-sharing parasites. Field studies measuring the cross-sectional prevalence of malarial species often record fewer mixed infections than expected by chance, suggesting that one parasite has excluded another or suppressed its parasitaemia to undetectable levels. Prevalences may vary reciprocally between seasons, with one species increasing in prevalence while another decreases, despite parallel increases in the transmission rates of both, again suggesting suppression of one species by another. However, longitudinal studies of individual hosts indicate that malarial parasites may also favourably affect the host environment for each other, perhaps due to their depressive effect on the immune system: this is shown by the recrudescence of a latent malarial species immediately before or after the parasitic wave of another species. The suppression hypothesis is supported by data derived from the simultaneous inoculation of two Plasmodium species into laboratory animals; many studies have shown that one or both species are suppressed. This may be mediated by competition for host cells or nutrients, or by heterologous immunity. However, the suppressed species rebounds after the other species has abated, and may show a prolonged infection. Experimental evidence that one species can facilitate the recrudescence of another is minimal, but this may reflect the paucity of investigations of this phenomenon. Laboratory studies show only minor cross-resistance between host-sharing species, which is consistent with the hypothesis that their co-occurrence has led to antigenic divergence or that species showing strong heterologous resistance cannot co-exist in the same host population. Such complementarity occurs not only with the host immune response but also with many other life-history characteristics of host-sharing parasites, such as host cell preference. I conclude that malarial species have been important in each other's evolution, particularly in the tropics where multi-species complexes are common.
To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.
To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.