Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T00:06:02.625Z Has data issue: false hasContentIssue false

A minimalist macroparasite diversity in the round goby of the Upper Rhine reduced to an exotic acanthocephalan lineage

Published online by Cambridge University Press:  12 December 2017

Gwendoline M. David*
Affiliation:
Université de Strasbourg, CNRS, LIVE UMR 7362, F-67000 Strasbourg, France Université de Paris-Sud, CNRS, ESE UMR 8079, F-91405 Orsay, France
Cybill Staentzel
Affiliation:
Université de Strasbourg, CNRS, LIVE UMR 7362, F-67000 Strasbourg, France
Olivier Schlumberger
Affiliation:
Université de Strasbourg, CNRS, LIVE UMR 7362, F-67000 Strasbourg, France Ecole Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES), F-67070 Strasbourg, France
Marie-Jeanne Perrot-Minnot
Affiliation:
Université de Bourgogne Franche-Comté, CNRS, Biogéosciences UMR 6282, F-21000 Dijon, France
Jean-Nicolas Beisel
Affiliation:
Université de Strasbourg, CNRS, LIVE UMR 7362, F-67000 Strasbourg, France Ecole Nationale du Génie de l'Eau et de l'Environnement de Strasbourg (ENGEES), F-67070 Strasbourg, France
Laurent Hardion
Affiliation:
Université de Strasbourg, CNRS, LIVE UMR 7362, F-67000 Strasbourg, France
*
Author for correspondence: Gwendoline M. David, E-mail: gwendoline.david@u-psud.fr

Abstract

The round goby, Neogobius melanostomus, is a Ponto-Caspian fish considered as an invasive species in a wide range of aquatic ecosystems. To understand the role that parasites may play in its successful invasion across Western Europe, we investigated the parasitic diversity of the round goby along its invasion corridor, from the Danube to the Upper Rhine rivers, using data from literature and a molecular barcoding approach, respectively. Among 1666 parasites extracted from 179 gobies of the Upper Rhine, all of the 248 parasites barcoded on the c oxidase subunit I gene were identified as Pomphorhynchus laevis. This lack of macroparasite diversity was interpreted as a loss of parasites along its invasion corridor without spillback compensation. The genetic diversity of P. laevis was represented by 33 haplotypes corresponding to a haplotype diversity of 0·65 ± 0·032, but a weak nucleotide diversity of 0·0018 ± 0·00015. Eight of these haplotypes were found in 88·4% of the 248 parasites. These haplotypes belong to a single lineage so far restricted to the Danube, Vistula and Volga rivers (Eastern Europe). This result underlines the exotic status of this Ponto-Caspian lineage in the Upper Rhine, putatively disseminated by the round goby along its invasion corridor.

Type
Research Article
Copyright
Copyright © Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bollache, L, Devin, S, Wattier, R, Chovet, M, Beisel, JN, Moreteau, JC and Rigaud, T (2004) Rapid range extension of the Ponto-Caspian amphipod Dikerogammarus villosus in France: potential consequences. Archiv für Hydrobiologie 160(1), 5766.CrossRefGoogle Scholar
Borza, P, Eros, T and Oertel, N (2009) Food resource partitioning between two invasive gobiid species (Pisces, Gobiidae) in the littoral zone of the River Danube, Hungary. International Review of Hydrobiology 94, 609621.CrossRefGoogle Scholar
Brandner, J, Auerswald, K, Cerwenka, AF, Schliewen, UK and Geist, J (2013) Comparative feeding ecology of invasive Ponto-Caspian gobies. Hydrobiologia 703, 113131.CrossRefGoogle Scholar
Creplin, FCH (1825) Obsemationes de entozois. Gryphiswaldiae 86, 1.Google Scholar
Dezfuli, BS, Simoni, E, Duclos, L and Rossetti, E (2008) Crustacean–acanthocephalan interaction and host cell-mediated immunity: parasite encapsulation and melanization. Folia Parasitologica 55, 5359.CrossRefGoogle ScholarPubMed
Dunn, AM and Hatcher, MJ (2015) Parasites and biological invasions: parallels, interactions, and control. Trends in Parasitology 31, 189199.CrossRefGoogle ScholarPubMed
Emde, S, Rueckert, S, Palm, HW and Klimpel, S (2012) Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the River Rhine. PLoS ONE 7, e53218.CrossRefGoogle ScholarPubMed
Emde, S, Kochmann, J, Kuhn, T, Plath, M and Klimpel, S (2014) Getting what is served? Feeding ecology influencing parasite-host interactions in invasite round goby Neogobius melanostomus. PLoS ONE 9, e109971.CrossRefGoogle ScholarPubMed
Folmer, O, Black, M, Hoeh, W, Lutz, R and Vrijenhoek, R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3, 294299.Google ScholarPubMed
Francová, K, Ondračková, M, Polačik, M and Jurajda, P (2011) Parasite fauna of native and non-native populations of Neogobius melanostomus (Pallas, 1814) (Gobiidae) in the longitudinal profile of the Danube River. Journal of Applied Ichthyology 27, 879886.CrossRefGoogle Scholar
Garnier, A and Barillier, A (2015) The Kembs project: environmental integration of a large existing hydropower scheme. La Houille Blanche 4, 2128.Google Scholar
Gendron, AD, Marcogliese, DJ and Thomas, M (2012) Invasive species are less parasitized than native competitors, but for how long? The case of the round goby in the Great Lakes-St. Lawrence Basin. Biological Invasions 14, 367384.CrossRefGoogle Scholar
Gherardi, F. (2007). Biological invasions in inland waters: an overview. In Gherardi, F (ed.). Biological Invaders in Inland Waters: Profiles, Distribution, and Threats. Dordrecht: Springer, pp. 325.CrossRefGoogle Scholar
Havel, JE, Kovalenko, KE, Thomaz, SM, Amalfitano, S and Kats, LB (2015) Aquatic invasive species: challenges for the future. Hydrobiologia 750, 147170.CrossRefGoogle ScholarPubMed
Herlevi, H, Puntila, R, Kuosa, H and Fagerholm, H-P (2017) Infection rates and prevalence of metazoan parasites of the non-native round goby (Neogobius melanostomus) in the Baltic Sea. Hydrobiologia 792, 265282.Google Scholar
Hohenadler, MAA, Nachev, M, Thielen, F, Taraschewski, H, Grabner, D and Sures, B (2017) Pomphorhynchus laevis: an invasive species in the river Rhine? Biological Invasions, 111. https://doi.org/10.1007/s10530-017-1527-9Google Scholar
Kelly, DW, Paterson, RA, Townsend, CR, Poulin, P and Tompkins, DM (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90, 20472056.CrossRefGoogle ScholarPubMed
Kennedy, CR (2006). Ecology of the Acanthocephala. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Košuthová, L, Košco, J, Letková, V, Košuth, P and Manko, P (2009) New records of endoparasitic helminths in alien invasive fishes from the Carpathian region. Biologia 64, 776780.Google Scholar
Kvach, Y and Skóra, KE (2007) Metazoa parasites of the invasive round goby Apollonia melanostoma (Neogobius melanostomus) (Pallas) (Gobiidae: Osteichthyes) in the Gulf of Gdansk, Baltic Sea, Poland: a comparison with the Black Sea. Parasitology Research 100, 767774.CrossRefGoogle Scholar
Kvach, Y and Winkler, HM (2011) The colonization of the invasive round goby Neogobius melanostomus by parasites in new localities in the southwestern Baltic Sea. Parasitology Research 109, 769780.CrossRefGoogle ScholarPubMed
Kvach, Y, Kornyychuk, Y, Mierzejewska, K, Rubtsova, N, Yurakhno, V, Grabowska, J and Ovcharenko, M (2014) Parasitization of invasive gobiids in the eastern part of the Central trans-European corridor of invasion of Ponto-Caspian hydrobionts. Parasitology Research 113, 16051624.CrossRefGoogle ScholarPubMed
Leuven, RSEW, van der Velde, G, Baijens, I, Snijders, J, van der Zwart, C, Lenders, HJR and bij de Vaate, A (2009) The river Rhine: a global highway for dispersal of aquatic invasive species. Biological Invasions 11, 19892008.CrossRefGoogle Scholar
Manne, S, Poulet, N and Dembski, S (2013) Colonization of the Rhine basin by non-native gobiids: an update of the situation in France. Knowledge and Management of Aquatic Ecosystems 411, 2.CrossRefGoogle Scholar
Médoc, V, Rigaud, T, Motreuil, S, Perrot-Minnot, M-J and Bollache, L (2011) Paratenic hosts as regular transmission route in the acanthocephalan Pomphorhynchus laevis: potential implications for food webs. Naturwissenschaften 98, 825835.CrossRefGoogle ScholarPubMed
Molnar, K (2006) Some remarks on parasitic infections of the invasive Neogobius spp. (Pisces) in the Hungarian reaches of the Danube River, with a description of Goussia szekelyi sp. n. (Apicomplexa: Eimeriidae). Journal of Applied Ichthyology 22, 395400.Google Scholar
Mühlegger, JM (2008). Parasites of Apollonia melanostoma (Pallas, 1814) and Neogobius kessleri (Guenther, 1861) (Osteichthyes, Gobiidae) from the Danube River in Austria. Diplomarbeit, Wien University, p. 47.Google Scholar
Nunes, AL, Tricarico, E, Panov, VE, Cardoso, AC and Katsanevakis, S (2015) Pathways and gateways of freshwater invasions in Europe. Aquatic Invasions 10, 359370.Google Scholar
Ondračková, M, Dávidová, M, Pečinková, M, Blažek, R, Gelnar, M, Valová, Z, Černý, J and Jurajda, P (2005) Metazoan parasites of Neogobius fishes in the Slovak section of the River Danube. Journal of Applied Ichthyology 21, 345349.Google Scholar
Ondračková, M, Francová, K, Dávidová, M, Polačik, M and Jurajda, P (2010) Condition status and parasite infection of Neogobius kessleri and N. melanostomus (Gobiidae) in their native and non-native area of distribution of the Danube River. Ecological Research 25, 857866.CrossRefGoogle Scholar
Ondračková, M, Valová, Z, Hudcová, I, Michálková, V, Šimková, A, Borcherding, J and Jurajda, P (2015) Temporal effects on host-parasite associations in four naturalized goby species living in sympatry. Hydrobiologia 746, 233243.CrossRefGoogle Scholar
Paradis, E (2010) Pegas: an R package for population genetics with an integrated-modular approach. Bioinformatics 26, 419420.Google Scholar
Paterson, RA, Townsend, CR, Tompkins, DM and Poulin, R (2012) Ecological determinants of parasite acquisition by exotic fish species. Oikos 121, 18891895.CrossRefGoogle Scholar
Perrot-Minnot, M-J (2004) Larval morphology, genetic divergence, and contrasting levels of host manipulation between forms of Pomphorhynchus laevis (Acanthocephala). International Journal for Parasitology 34, 4554.CrossRefGoogle ScholarPubMed
Perrot-Minnot, M-J, Špakulová, M, Wattier, R, Kotlík, P, Düşen, S, Aydoğdu, A and Tougard, C. Contrasting phylogeography of two Western Palaearctic fish parasites despite similar life cycles. The Journal of Biogeography, in press. DOI: 10.1111/jbi.13118.Google Scholar
Poulin, R and Mouillot, D (2003) Parasite specialization from a phylogenetic perspective: a new index of host specificity. Parasitology 126, 473480.Google Scholar
Rewicz, T, Grabowski, M, MacNeil, C and Bacela-Spychalska, K (2014) The profile of a ‘perfect’ invader – the case of killer shrimp, Dikerogammarus villosus. Aquatic Invasions 9, 267288.CrossRefGoogle Scholar
Roche, KF, Janac, M and Jurajda, P (2013) A review of Gobiid expansion along the Danube-Rhine corridor – geopolitical change as a driver for invasion. Knowledge and Management of Aquatic Ecosystems 411, 01.Google Scholar
Rolbiecki, L (2006) Parasites of the round goby, Neogobius melanostomus (Pallas 1811), an invasive species in the Polish fauna of the Vistula Lagoon ecosystem. Oceanologie 48, 545561.Google Scholar
R Core Team (2017). R: A Language and Environment for Statistical Computing, Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/Google Scholar
Sala, OE, Chapin, FS III, Armesto, JJ, Berlow, E, Bloomfield, J, Dirzo, R, Huber-Sanwald, E, Huenneke, LF, Jackson, RB, Kinzig, A, Leemans, R, Lodge, DM, Mooney, HA, Oesterheld, M, Poff, NL, Sykes, MT, Walker, BH, Walker, M and Wall, DH (2000). Global biodiversity scenarios for the year 2100. Science 287, 17701774.CrossRefGoogle ScholarPubMed
Steinhart, GB, Marschall, EA and Stein, RA (2004) Round goby predation of small-mouth bass offspring in nests during simulated catch-and-release angling. Transaction of the American Fisheries Society 133, 121131.CrossRefGoogle Scholar
Stevove, B. and Kovac, V (2013). Do invasive bighead goby Neogobius kessleri and round goby N. melanostomus (Teleostei, Gobiidae) compete for food? Knowledge and Management of Aquatic Ecosystems 410, 8.Google Scholar
Sures, B and Siddall, R (1999) Pomphorhynchus laevis: the intestinal acanthocephalan as a lead sink for its fish host, chub (Leuciscus cephalus). Experimental Parasitology 93, 6672.CrossRefGoogle ScholarPubMed
Tamura, K, Stecher, G, Peterson, D, Filipski, A and Kumar, S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution 30, 27252729.CrossRefGoogle ScholarPubMed
Thielen, F, Zimmermann, S, Baska, F, Taraschewski, H and Sures, B (2004) The intestinal parasite Pomphorhynchus laevis (Acanthocephala) from barbel as a bioindicator for metal pollution in the Danube River near Budapest. Hungary. Environmental Pollution 129, 421429.CrossRefGoogle ScholarPubMed
Torchin, ME and Mitchell, CE (2004) Parasites, pathogens, and invasions by plants and animals. Frontiers in Ecology and the Environment 2, 183190.Google Scholar
Torchin, ME, Lafferty, KD, Dobson, AP, McKenzie, VJ and Kuris, AM (2003) Introduced species and their missing parasites. Nature 421, 628630.CrossRefGoogle ScholarPubMed
Van Beek, GCW (2006) The round goby Neogobius melanostomus first recorded in the Netherlands. Aquatic Invasions 1, 4243.CrossRefGoogle Scholar
Williamson, M (1996) Biological Invasions. London: Chapman & Hall.Google Scholar