Hostname: page-component-cd9895bd7-gvvz8 Total loading time: 0 Render date: 2024-12-26T12:09:14.507Z Has data issue: false hasContentIssue false

The morphology and life cycle of Nosema helminthorum Moniez, 1887*

Published online by Cambridge University Press:  06 April 2009

A. S. Dissanaike
Affiliation:
The Department of Parasitology, London School of Hygiene and Tropical Medicine†

Extract

The life cycle of Nosema helminthorum proceeds as follows (see Fig. 39).

Emergence of the sporoplasm. The spores swallowed by the vertebrate host (sheep) reach the small intestine where the tapeworm (Moniezia) is already present. Here are extruded the filaments with the sporoplasms attached to their tips. These sporoplasms come in contact with the cuticle of the tapeworm at various places, round off and work their way through the cuticle into the tissues of the worm.

Schizogony. They next proceed between the subcuticular cells (3) and start multiplying by binary fission or by multiple division (4, 5, 6, 7). Some of the so-called schizonts are spherical with three to four nuclei (6), while others are elongate plasmodia which give rise to chains of daughter-schizonts by division (7). All these schizonts give rise eventually to faintly staining schizonts in which the nuclei appear to be less compact. Some of these now enter the second phase of schizogony in which elongate fusiform or spindle-shaped cells are ultimately produced (10, 14). The nuclei of these elongate cells divide and move to the opposite poles, and the cytoplasm constricts between them. In this way a chain of fusiform schizonts may be formed (11). The final products of these divisions are fusiform or spindle-shaped cells (11, 15) which are really the precursors of sporonts, in which the nuclei are divided but not separated. These nuclei remain closely associated and eventually fuse either before the sporont stage is reached or later.

Sporogony. The sporonts are ovoidal cells which are generally uninucleate after fusion of the double nuclei of the previous stage. The nucleus is at the centre. Soon a vacuole is formed at the posterior pole, and within it there appears a premetachromatic granule (16) which gives rise to the metachromatic body in the mature spore.

Spore formation. A chitinous spore wall is then secreted (17) and the filament is probably formed at this stage in the central axis of the cytoplasm. The rest of the cytoplasm transforms into the sporoplasm, which surrounds the filament like a girdle (18). The spore now becomes mature and is infective to a new host. It is passed out within the gravid segments of the worm and, when it reaches the exterior, is liberated when the segments degenerate. These spores are quite resistant and probably remain dormant during the winter; they are swallowed by Moniezia-infected lambs in spring, when the cycle is resumed.

It is unlikely that the oribatid mite, which is the vector of Moniezia, plays any role in the transmission of Nosema helminthorum. My experimental studies (to be published later) suggest that the only possible part played by the mite is to carry the spores, accidentally swallowed by it, protecting them till they reach the adult worm already present in the intestine of the vertebrate host.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1957

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Canning, E. U. (1953). A new microsporidian, Nosema locustae n.sp., from the fat body of the African migratory locust Locusta migratoria migratorioides R. & F. Parasitology, 43, 287–90.CrossRefGoogle ScholarPubMed
Debaisieux, P. (1919 a). Microsporidies parasites des larves de Simulium (Thelohania varians). Cellule, 30, 4779.Google Scholar
Debaisieux, P. (1919 b). Études sur les Microsporidies. II. Glugea danilewskyi L. Pfr. III. Glugea mulleri L. Pfr. Cellule, 30, 153–83.Google Scholar
Debaisieux, P. (1919 c). Études sur les Microsporidies. Glugea anomala Moniez. Cellule, 30, 217–43.Google Scholar
Debaisieux, P. (1928). Études cytologiques sur quelques Microsporidies. Cellule, 38, 389450.Google Scholar
Debaisieux, P. & Gastaldi, L. (1919). Les Microsporidies parasites des larves de Simulium. II. Cellule, 30, 187213.Google Scholar
Dissanaike, A. S. (1955 a). Emergence of the sporoplasna in Nosema helminthorum. Nature, Lond., 175, 1002–3.CrossRefGoogle ScholarPubMed
Dissanaike, A. S. (1955 b). (Demonstration). 2. Microsporidian infections in tapeworms; instances of hyperparasitism. Trans. R. Soc. Trop. Med. Hyg. 49, 294–5.Google Scholar
Dissanaike, A. S. (1957). Protozoa hyperparasitic in Helminths with some observations on Nosema helminthorum Moniez, 1887. J. Helminth. 31, 4764.CrossRefGoogle ScholarPubMed
Dissanaike, A. S. & Canning, E. U. (1957). The mode of emergence of the sporoplasm in Microsporidia and its relation to the structure of the spore. Parasitology, 47, 92–9.CrossRefGoogle Scholar
Fantham, H. B. & Porter, A. (1912). The morphology and life history of Nosema apis, and the significance of its various stages in the so-called ‘Isle of Wight's’ disease in Bees (Microsporidiosis). Ann. Trop. Med. Parasit. 6, 163–95.CrossRefGoogle Scholar
Fantham, H. B. & Porter, A. (1914). The morphology, biology and economic importance of Nosema bombi n.sp., parasitic in various Humble Bees (Bombus spp.). Ann. Trop. Med. Parasit. 8, 623–38.CrossRefGoogle Scholar
Georgévitch, J. (1927). Recherches sur la Pleistophora periplanetae Lutz et Splendore. Arch. Zool. exp. gén. 66, 121.Google Scholar
Georgévitch, J. (1929). Nouvelles recherches sur les Microsporidies. Contribution à la connaissance du cycle évolutif de Plistophora blochmanni Zwölfer. Arch. Protistenk. 65, 124–50.Google Scholar
Guyénot, E. & Naville, A. (1922). Recherches sur le parasitisme et l'évolution d'une microsporidie, Glugea danilewskyi L. Prf. parasite de la couleuvre. Rev. suisse Zool. 30, 161.Google Scholar
Jírovec, O. (1936). Studien über Microsporidien. Mém. Soc. zool. tchécosl. 4, 179.Google Scholar
Kudo, R. R. (1916). Contributions to the study of Parasitic protozoa. I. On the structure and life history of Nosema bombycis Nägeli. Bull. Imp. Seric. Exp. Sta. Japan, 1, 3151.Google Scholar
Kudo, R. R. (1918). Experiments on the extrusion of polar filaments of Cnidosporidian spore. J. Parasit. 4, 141–7.CrossRefGoogle Scholar
Kudo, R. R. (1921). Studies on Microsporidia, with special reference to those parasitic in mosquitoes. J. Morph. 35, 153–93.CrossRefGoogle Scholar
Kudo, R. R. (1924 a). Studies on Microsporidia parasitic in mosquitoes. III. On Thelohania legeri Hesse (Th. illinoisensis Kudo). Arch. Protistenk. 49, 147–62.Google Scholar
Kudo, R. R. (1924 b). A biologic and taxonomic study of the Microsporidia. Illinois Biol. Monogr. 9 (2–3), 1268.Google Scholar
Kudo, R. R. (1925). Studies on microsporidia parasitic in mosquitoes. V. Further observations upon Stempellia (Thelohania) magna Kudo, parasitic in Culex pipiens and C. territans. Biol. Bull., Woods Hole, 48, 112–27.CrossRefGoogle Scholar
Kudo, B. R. (1944). Morphology and development of Nosema notabilis Kudo parasitic in Sphaerospora polymorpha Davis, a parasite of Opsanus tau and O. beta. Illinois Biol. Monogr. 20, 783.Google Scholar
Labbé, A. (1899). Sporozoa. Das Tierreich, Lief. 5, p. 11. Berlin.Google Scholar
Léger, L. & Hesse, E. (1907). Sur une nouvelle myxosporidie parasite de la sardine. C.R. Acad. Sci., Paris, 142, 720–2.Google Scholar
Léger, L. & Hesse, E. (1916). Sur la structure de la spores des Microsporidies. C.R. Soc. Biol., Paris, 79, 1049–53.Google Scholar
Mattes, O. (1928). Ueber den Entwicklungsgang der Microsporidie Thelohania ephestiae und die von ihr hervorgerufenen Krankheitserscheinungen. Z. wiss. Zool. 132, 526–82.Google Scholar
Mercier, L. (1908). Sur la développement et la structure des spores de Thelohania giardi Henneguy. C.R. Acad. Sci., Paris, 146, 34–8.Google Scholar
Moniez, R. (1879). Note sur des parasites de helminthes. Bull. Sci. Dep. Nord. 2, 304.Google Scholar
Moniez, R. (1887). Observations pour la revision des microsporidies. C.R. Acad. Sci., Paris, 104, 1312–14.Google Scholar
Naville, A. (1931). Les Sporozoaires (Cycles chromosomiques et sexualité). Mém. Soc. Phys. Genève. 41 (1), 4667.Google Scholar
Ohmori, J. (1912). Zur Kenntnis des Pebrine-Erreger, Nosema bombycis Nägeli. Arb. GesundhAmt., Berl., 40, 108–22.Google Scholar
Poisson, R. (1929). Recherches sur les microsporidies parasites des hémiptères (troisième note): Nosema veliae n.sp. Arch. Zool. exp. gén. (Notes et Rev.) 69, 5563.Google Scholar
Schröder, O. (1909). Thelohania chaetogastris, eine neue in Chaetogaster diaphaitus Gruith schmarotzende Microsporidienart. Arch. Protisterk. 14, 119–33.Google Scholar
Schuberg, A. (1910). Über Microsporidien aus dem Hoden der Barbe und durch sie verursachte Hypertrophie der Kerne. Arb. GesundhAmt., Berl., 33, 401434.Google Scholar
Schwarz, I. (1929). Untersuchungen an Microsporidien minieren der Schmetterlingsraupen, den ‘Symbioten’ Portiers. Z. Morph. Ökol. Tiere, 13, 665705.CrossRefGoogle Scholar
Stempell, W. (1909). Ueber Nosema bombycis Nägeli. Arch. Protistenk. 4, 281358.Google Scholar
Weiser, J. (1951). A contribution to the knowledge of the microsporidia of parasitic Helminths. Mém. Soc. zool. tchécosl. 15, 7984.Google Scholar
Weissenberg, R. (1913). Beiträge zur Kenntnis des Zeugungskreises der Mikrosporidien Glugea anomala Moniez und hertwigi Weissenberg. Arch. mikr. Anat. 82, 81163.CrossRefGoogle Scholar
Weissenberg, R. (1926). Microsporidien aus Tipulidenlarven (Nosema binucleatum n.sp., Thelohania tipulae n.sp.). Arch. Protistenk. 54, 431–67.Google Scholar
Zwölfer, W. (1926). Plistophora blochmanni, eine neue Microsporidie aus Gammarus pulex L. Arch. Protistenk. 54, 261354.Google Scholar