Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T08:30:25.835Z Has data issue: false hasContentIssue false

Mucosal trapping and degradation of Nippostrongylus brasiliensis occurs in the absence of STAT6

Published online by Cambridge University Press:  27 February 2013

NICHOLAS VAN PANHUYS*
Affiliation:
Laboratory of Systems Biology, NIAID, NIH, 9000 Rockville Pike Building 4, Room 128, MSC 0421, Bethesda, MD 20892, USA
MALI CAMBERIS
Affiliation:
Malaghan Institute of Medical Research, Gate 7, Victoria University, Kelburn Pde, PO Box 7060, Wellington 6242, New Zealand
MINORU YAMADA
Affiliation:
Department of Medical Zoology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kyoto 602-0841, Japan
TATSUYA TEGOSHI
Affiliation:
Department of Medical Zoology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kyoto 602-0841, Japan
NAOKI ARIZONO
Affiliation:
Department of Medical Zoology, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kyoto 602-0841, Japan
GRAHAM LE GROS
Affiliation:
Malaghan Institute of Medical Research, Gate 7, Victoria University, Kelburn Pde, PO Box 7060, Wellington 6242, New Zealand
*
*Corresponding author: Laboratory of Systems Biology, NIAID, NIH, 9000 Rockville Pike Building 4, Room 128, MSC 0421, Bethesda, MD 20892, USA. Tel: 301-496-3115. Fax: 301-480-7352. E-mail: vanpanhuysn@niaid.nih.gov

Summary

Hookworms represent a major infectious burden globally, especially in developing countries. The murine hookworm Nippostrongylus brasiliensis is normally cleared in a manner dependent on IL-13, IL4-R and STAT6 signalling. Here we have used STAT6-deficient animals to model a non-resistant population and describe 2 novel STAT6-independent processes for the clearance of N. brasiliensis. During primary infection STAT6−/− animals are able to clear gut-dwelling N. brasiliensis by a mechanism involving the trapping and degradation of worms in the gut mucosa. Here, a previously undescribed STAT6-independent up-regulation of Relm-β was observed which correlated with the mucosal trapping and degradation of worms. Previous studies have indicated that during secondary infection STAT6 deficient animals fail to expel adult worms and remain susceptible to re-infection and long-term colonization of the gut. We report here that an initial partially protective response occurs early upon re-infection in the absence of STAT6, and that a late-phase protective secondary response arises in the gut of STAT6-deficient mice leading to the clearance of the majority of N. brasiliensis, through their trapping and death in the mucosal layer of the lower region of the small intestine. These findings show that there are a number of redundant effector pathways which act to reduce worm burden in the gut which can be activated by mechanisms that do not work through the dominant STAT6 signalling pathway and may be useful as targets for future vaccination strategies against resistant hookworm strains.

Type
Research Article
Creative Commons
This is a work of the U.S. Government and is not subject to copyright protection in the United States.
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Asano, T., Sakosda, H., Fujishiro, M., Anai, M., Kushiyama, A., Horike, N., Kamata, H., Ogihara, T., Kurihara, H. and Uchijima, Y. (2006). Physiological significance of resistin and resistin-like molecules in the inflammatory process and insulin resistance. Current Diabetes Reviews 2, 449454.Google ScholarPubMed
Aubry, M. L., Cowell, P., Davey, M. J. and Shevde, S. (1970). Aspects of the pharmacology of a new anthelmintic: pyrantel. British Journal of Pharmacology 38, 332344.CrossRefGoogle ScholarPubMed
Barner, M., Mohrs, M., Brombacher, F. and Kopf, M. (1998). Differences between IL-4R alpha-deficient and IL-4-deficient mice reveal a role for IL-13 in the regulation of Th2 responses. Current Biology 8, 669672.CrossRefGoogle ScholarPubMed
Camberis, M., Le Gros, G. and Urban, J. Jr. (2003). Animal model of Nippostrongylus brasiliensis and Heligmosomoides polygyrus. Current Protocols in Immunology, Chapter 19, Unit 19 12. doi: 10.1002/0471142735.im1912s55.CrossRefGoogle ScholarPubMed
Carlisle, M. S., McGregor, D. D. and Appleton, J. A. (1991). Intestinal mucus entrapment of Trichinella spiralis larvae induced by specific antibodies. Immunology 74, 546551.Google ScholarPubMed
Cliffe, L. J., Humphreys, N. E., Lane, T. E., Potten, C. S., Booth, C. and Grencis, R. K. (2005). Accelerated intestinal epithelial cell turnover: a new mechanism of parasite expulsion. Science 308 (5727), 14631465. doi: 308/5727/1463 [pii] 10.1126/science.1108661.CrossRefGoogle ScholarPubMed
Croll, N. A. (1977). The location of parasites within their hosts: the behavioural component in the larval migration of Nippostrongylus braziliensis in the tissues of the rat. International Journal for Parasitology 7, 201204.CrossRefGoogle ScholarPubMed
Dineen, J. K., Ogilvie, B. M. and Kelly, J. D. (1973). Expulsion of Nippostrongylus brasiliensis from the intestine of rats. Collaboration between humoral and cellular components of the immune response. Immunology 24, 467475.Google ScholarPubMed
Finkelman, F. D., Morris, S. C., Orekhova, T., Mori, M., Donaldson, D., Reiner, S. L., Reilly, N. L., Schopf, L. and Urban, J. F. Jr. (2000). Stat6 regulation of in vivo IL-4 responses. Journal of Immunology 164, 23032310.CrossRefGoogle ScholarPubMed
Finkelman, F. D., Shea-Donohue, T., Morris, S. C., Gildea, L., Strait, R., Madden, K. B., Schopf, L. and Urban, J. F. Jr. (2004). Interleukin-4- and interleukin-13-mediated host protection against intestinal nematode parasites. Immunological Reviews 201, 139155.CrossRefGoogle ScholarPubMed
Harvie, M., Camberis, M., Tang, S. C., Delahunt, B., Paul, W. and Le Gros, G. (2010). The lung is an important site for priming CD4T-cell-mediated protective immunity against gastrointestinal helminth parasites. Infection and Immunity 78, 37533762. doi: 10.1128/IAI.00502-09.CrossRefGoogle ScholarPubMed
Herbert, D. R., Yang, J. Q., Hogan, S. P., Groschwitz, K., Khodoun, M., Munitz, A., Orekov, T., Perkins, C., Wang, Q., Brombacher, F., Urban, J. F. Jr., Rothenberg, M. E. and Finkelman, F. D. (2009). Intestinal epithelial cell secretion of RELM-beta protects against gastrointestinal worm infection. Journal of Experimental Medicine 206, 29472957. doi: 10.1084/jem.20091268.CrossRefGoogle ScholarPubMed
Horsnell, W. G., Cutler, A. J., Hoving, J. C., Mearns, H., Myburgh, E., Arendse, B., Finkelman, F. D., Owens, G. K., Erle, D. and Brombacher, F. (2007). Delayed goblet cell hyperplasia, acetylcholine receptor expression, and worm expulsion in SMC-specific IL-4Ralpha-deficient mice. PLoS Pathogenesis 3, e1.CrossRefGoogle ScholarPubMed
Ishiwata, K., Nakao, H., Nakamura-Uchiyama, F. and Nawa, Y. (2002). Immune-mediated damage is not essential for the expulsion of Nippostrongylus brasiliensis adult worms from the small intestine of mice. Parasite Immunology 24, 381386.CrossRefGoogle Scholar
Jacobson, R. H., Reed, N. D. and Manning, D. D. (1977). Expulsion of Nippostrongylus brasiliensis from mice lacking antibody production potential. Immunology 32, 867874.Google ScholarPubMed
Knight, P. A., Pemberton, A. D., Robertson, K. A., Roy, D. J., Wright, S. H. and Miller, H. R. (2004). Expression profiling reveals novel innate and inflammatory responses in the jejunal epithelial compartment during infection with Trichinella spiralis. Infection and Immunity 72, 60766086.CrossRefGoogle ScholarPubMed
Krimi, R. B., Kotelevets, L., Dubuquoy, L., Plaisancie, P., Walker, F., Lehy, T., Desreumaux, P., Van Seuningen, I., Chastre, E., Forgue-Lafitte, M. E. and Marie, J. C. (2008). Resistin-like molecule beta regulates intestinal mucous secretion and curtails TNBS-induced colitis in mice. Inflammatory Bowel Diseases 14, 931941.CrossRefGoogle ScholarPubMed
Le Gros, G., Ben-Sasson, S. Z., Seder, R., Finkelman, F. D. and Paul, W. E. (1990). Generation of interleukin 4 (IL-4)-producing cells in vivo and in vitro: IL-2 and IL-4 are required for in vitro generation of IL-4-producing cells. Journal of Experimental Medicine 172, 921929.CrossRefGoogle ScholarPubMed
Liu, Q., Kreider, T., Bowdridge, S., Liu, Z., Song, Y., Gaydo, A. G., Urban, J. F. Jr. and Gause, W. C. (2010). B cells have distinct roles in host protection against different nematode parasites. Journal of Immunology 184, 52135223. doi: jimmunol.0902879 [pii] 10.4049/jimmunol.0902879.CrossRefGoogle Scholar
Love, R. J., Ogilvie, B. M. and McLaren, D. J. (1975). Nippostrongylus brasiliensis: further properties of antibody-damaged worms and induction of comparable damage by maintaining worms in vitro. Parasitology 71, 275283.CrossRefGoogle ScholarPubMed
Madden, K. B., Whitman, L., Sullivan, C., Gause, W. C., Urban, J. F. Jr., Katona, I. M., Finkelman, F. D. and Shea-Donohue, T. (2002). Role of STAT6 and mast cells in IL-4- and IL-13-induced alterations in murine intestinal epithelial cell function. Journal of Immunology 169, 44174422.CrossRefGoogle ScholarPubMed
Madden, K. B., Yeung, K. A., Zhao, A., Gause, W. C., Finkelman, F. D., Katona, I. M., Urban, J. F. Jr. and Shea-Donohue, T. (2004). Enteric nematodes induce stereotypic STAT6-dependent alterations in intestinal epithelial cell function. Journal of Immunology 172, 56165621.CrossRefGoogle ScholarPubMed
Min, B., Prout, M., Hu-Li, J., Zhu, J., Jankovic, D., Morgan, E. S., Urban, J. F. Jr., Dvorak, A. M., Finkelman, F. D., LeGros, G. and Paul, W. E. (2004). Basophils produce IL-4 and accumulate in tissues after infection with a Th2-inducing parasite. Journal of Experimental Medicine, 200, 507517. doi: 10.1084/jem.20040590.CrossRefGoogle ScholarPubMed
Ogilvie, B. M. and Hockley, D. J. (1968). Effects of immunity of Nippostrongylus brasiliensis adult worms: reversible and irreversible changes in infectivity, reproduction, and morphology. Journal of Parasitology 54, 10731084.CrossRefGoogle ScholarPubMed
Ricardo-Gonzalez, R. R., Red Eagle, A., Odegaard, J. I., Jouihan, H., Morel, C. R., Heredia, J. E., Mukundan, L., Wu, D., Locksley, R. M. and Chawla, A. (2010). IL-4/STAT6 immune axis regulates peripheral nutrient metabolism and insulin sensitivity. Proceedings of the National Academy of Sciences USA 107, 2261722622. doi: 10.1073/pnas.1009152108.CrossRefGoogle ScholarPubMed
Sher, A. and Coffman, R. L. (1992). Regulation of immunity to parasites by T cells and T cell-derived cytokines. Annual Review of Immunology 10, 385409. doi: 10.1146/annurev.iy.10.040192.002125.CrossRefGoogle Scholar
Soga, K., Yamauchi, J., Kawai, Y., Yamada, M., Uchikawa, R., Tegoshi, T., Mitsufuji, S., Yoshikawa, T. and Arizono, N. (2008). Alteration of the expression profiles of acidic mucin, sialyltransferase, and sulfotransferases in the intestinal epithelium of rats infected with the nematode Nippostrongylus brasiliensis. Parasitology Research 103, 14271434.CrossRefGoogle ScholarPubMed
Spicer, S. S. (1965). Diamine methods for differentiating mucosubstances histochemically. Journal of Histochemistry and Cytochemistry 13, 211234.CrossRefGoogle Scholar
Takeda, K., Hashimoto, K., Uchikawa, R., Tegoshi, T., Yamada, M. and Arizono, N. (2010). Direct effects of IL-4/IL-13 and the nematode Nippostrongylus brasiliensis on intestinal epithelial cells in vitro. Parasite Immunology 32, 420429.CrossRefGoogle Scholar
Tindall, N. R. and Wilson, P. A. (1990 a). A basis to extend the proof of migration routes of immature parasites inside hosts: estimated time of arrival of Nippostrongylus brasiliensis and Strongyloides ratti in the gut of the rat. Parasitology 100, 275280.CrossRefGoogle ScholarPubMed
Tindall, N. R. and Wilson, P. A. (1990 b). An extended proof of migration routes of immature parasites inside hosts: pathways of Nippostrongylus brasiliensis and Strongyloides ratti in the rat are mutually exclusive. Parasitology 100, 281288.CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Katona, I. M., Paul, W. E. and Finkelman, F. D. (1991). Interleukin 4 is important in protective immunity to a gastrointestinal nematode infection in mice. Proceedings of the National Academy of Sciences USA 88, 55135517.CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Noben-Trauth, N., Donaldson, D. D., Madden, K. B., Morris, S. C., Collins, M. and Finkelman, F. D. (1998). IL-13, IL-4Ralpha, and Stat6 are required for the expulsion of the gastrointestinal nematode parasite Nippostrongylus brasiliensis. Immunity 8, 255264. doi: S1074-7613(00)80477-X [pii].CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Schopf, L., Morris, S. C., Orekhova, T., Madden, K. B., Betts, C. J., Gamble, H. R., Byrd, C., Donaldson, D., Else, K. and Finkelman, F. D. (2000). Stat6 signaling promotes protective immunity against Trichinella spiralis through a mast cell- and T cell-dependent mechanism. Journal of Immunology 164, 20462052. doi: ji_v164n4p2046 [pii].CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Noben-Trauth, N., Schopf, L., Madden, K. B. and Finkelman, F. D. (2001 a). Cutting edge: IL-4 receptor expression by non-bone marrow-derived cells is required to expel gastrointestinal nematode parasites. Journal of Immunology 167, 60786081.CrossRefGoogle ScholarPubMed
Urban, J. F. Jr., Noben-Trauth, N., Schopf, L., Madden, K. B. and Finkelman, F. D. (2001 b). Cutting edge: IL-4 receptor expression by non-bone marrow-derived cells is required to expel gastrointestinal nematode parasites. Journal of Immunology 167, 60786081.CrossRefGoogle ScholarPubMed
van Panhuys, N., Tang, S. C., Prout, M., Camberis, M., Scarlett, D., Roberts, J., Hu-Li, J., Paul, W. E. and Le Gros, G. (2008). In vivo studies fail to reveal a role for IL-4 or STAT6 signaling in Th2 lymphocyte differentiation. Proceedings of the National Academy of Sciences USA 105, 1242312428. doi: 0806372105 [pii] 10.1073/pnas.0806372105.CrossRefGoogle ScholarPubMed
Voehringer, D., Reese, T. A., Huang, X., Shinkai, K. and Locksley, R. M. (2006). Type 2 immunity is controlled by IL-4/IL-13 expression in hematopoietic non-eosinophil cells of the innate immune system. Journal of Experimental Medicine 203, 14351446.CrossRefGoogle ScholarPubMed
Voehringer, D., Stanley, S. A., Cox, J. S., Completo, G. C., Lowary, T. L. and Locksley, R. M. (2007). Nippostrongylus brasiliensis: identification of intelectin-1 and -2 as Stat6-dependent genes expressed in lung and intestine during infection. Experimental Parasitology 116, 458466.CrossRefGoogle ScholarPubMed
Weinstein, P. P. (2006). Morphological differentiation and function of the coelomocytes in the parasitic stages of Nippostrongylus brasiliensis. Journal of Parasitology 92, 894917.CrossRefGoogle ScholarPubMed
Wu, D., Molofsky, A. B., Liang, H. E., Ricardo-Gonzalez, R. R., Jouihan, H. A., Bando, J. K., Chawla, A. and Locksley, R. M. (2011). Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science 332, 243247. doi: 10.1126/science.1201475.CrossRefGoogle ScholarPubMed
Yokogawa, S. (1920). A new nematode from the rat. Journal of Parasitology 7, 2933.CrossRefGoogle Scholar
Yokogawa, S. (1922). Development of Heligmosomoides muris Yokogawa, a nematode from the intestine of the wild rat. Parasitology 14, 127166.CrossRefGoogle Scholar
Zhao, A., McDermott, J., Urban, J. F. Jr., Gause, W., Madden, K. B., Yeung, K. A., Morris, S. C., Finkelman, F. D. and Shea-Donohue, T. (2003). Dependence of IL-4, IL-13, and nematode-induced alterations in murine small intestinal smooth muscle contractility on Stat6 and enteric nerves. Journal of Immunology 171, 948954.CrossRefGoogle ScholarPubMed
Zhao, A., Urban, J. F. Jr., Anthony, R. M., Sun, R., Stiltz, J., van Rooijen, N., Wynn, T. A., Gause, W. C. and Shea-Donohue, T. (2008). Th2 cytokine-induced alterations in intestinal smooth muscle function depend on alternatively activated macrophages. Gastroenterology 135, 217225, e211.CrossRefGoogle ScholarPubMed
Zhao, A., Urban, J. F. Jr., Sun, R., Stiltz, J., Morimoto, M., Notari, L., Madden, K. B., Yang, Z., Grinchuk, V., Ramalingam, T. R., Wynn, T. A. and Shea-Donohue, T. (2010) Critical role of IL-25 in nematode infection-induced alterations in intestinal function. Journal of Immunology 185, 69216929.CrossRefGoogle Scholar